

Objectives

- 1. To introduce a selection of powerful **visualisation tools**, and to highlight their strengths and limitations
- 2. To provide some practical **tips and tricks** for using these tools

Disclaimer: A Subjective Selection

- There are many other useful visualisation tools available!
- 15 Free Data Visualization Tools for 2023

Expressiveness vs Usability

Mike Bostock, 2017 Keynote:

- [Code-free] visualisation tools sacrifice generality for greater efficiency performing particular tasks
- Code has unparalleled expressiveness; it is the most general tool we have
- A medium for discovery *must* be general. Creativity requires composition

Tableau ‡

- As a student, you are eligible for a free, one-year *Tableau Desktop* license
 - <u>https://www.tableau.com/academic/students</u>
- Can create interactive dashboards in minutes
 - Connect to one or more data sources
 - Manipulate dimensions by dragging and dropping them
 - · Use spreadsheet-like formulas to derive new variables
 - Support for operations like filtering and aggregation
- Thousands of examples online:
 - <u>https://public.tableau.com/app/discover</u>
- Easy to share/publish your visualisations online

Tableau Example:

- The MET Corpus is a collection of 75,000 mixed Māori-English tweets
- These were labelled at both the word and token level
- Provides insights into borrowing and codeswitching in NZ

MET Corpus Demo

Figure 3: Interactive tool for exploring the *MET Corpus*: (a) percentage of corpus visible, (b) selected tokens by frequency, (c) tweet table, (d) tweets by year, (e) tweet predictions, (f) token predictions, (g) tweets by user.

What is D3 ? 🔰

- D3 (or D3.js) is a JavaScript library that stands for **data-driven documents**
- Allows you to dynamically manipulate the Document Object Model (DOM)
 - Key concepts include selections, databinding & the enter-update-exit pattern
 - Also supports data preparation, layout calculation, scales, shapes, animation, interaction and more
- Interactive, flexible and expressive!
- See http://shirleywu.studio/d3intro/

Document Object Model

7

ata preparation	2. Layout calculation	3. DOM manipulation	A. Finishing touches	B. Interactions	
Array	Array	Selections	Axes	Brushes	
Statistics	Histograms	Selecting	Axis	Brush	
Search		Modifying			
Transformations	Chords	Joining data	Animation	Dispatches	
	Chord (ribbon)		Interpolators	Dispatch	
Chords			Easings		
Chord	Contours		Timers	Drag	
	Contours		Transitions	Drag	
Collections					
Objects	Forces		Color schemes	Quadtree	
Maps	Force		Categorical	Quadtree	
Sets			Diverging		
Nests	Geographies		Sequential	Selections	
	Paths		Cyclical	Events	
Hierarchies	Projections				
Hierarchy			Format	Voronoi	
	Hierarchies		Number format	Voronoi	
Shapes	Cluster		Time format		
Pies	Tree			Zoom	
Stacks	Treemap		Scales (for color)	Zoom	
	Partition		Sequential	Pan	
me intervals	Pack		Diverging		
ne intervals					
	Scales		Shapes		
	Continuous		Curves		
	Quantize		Links		
	Quantile		Symbols		
	Threshold				
	Ordinal				
	Shanee				
	Ares				
	Lines	Source: https:/	//observablehq.com	n/@sxywu/2-si	
	Areas	s and hind me	via data?colloction	-@cvuvu/intr	
	,	s-anu-pinu-nic	Jvie-uala: COllection	-@sxywu/IIIti	

9

D3 Example: RMT Corpus Visualisation

- The RMT Corpus contains predominantly Māorilanguage tweets
- 2D calendar visualisation of top 5 verified accounts
 - Position = Date tweeted
 - Radius = Number of favourites (likes + quotes + retweets)
 - Colour = User (filterable legend)
- Code Editor: <u>WebStorm</u> (free student account)
 - Visual Studio Code is a popular alternative
- For debugging, used Browser Developer Tools and ChatGPT

Tweeting in Te Reo: Top 5 Verified Accounts

Inspired by: https://www.nytimes.com/interactive/2017/09/01/upshot/cost-of-hurricane-harvey-only-one-storm-comes-close.html

Observable Plot

- "Observable helps you use data to think"
 - Explore and visualise data
 - Get ideas/inspiration from existing notebooks
 - · Share your insights with the vis community
- Reactive (live) programming
 - Interactive JavaScript notebooks (similar to Jupyter Notebook for Python)
 - Experiment with (big) data in real-time
 - Quickly build and iterate prototypes, re-use code, etc.
 - · Supports creation of highly interactive visualisations

Melody Meckfessel, CEO & Co-founder

Mike Bostock, CTO & Co-founder D3 Creator

What is Observable Plot?

- A higher-level JavaScript library for exploratory data visualisation
- Built on top of D3 (but more concise and convenient)
- Centred around the idea of "using vision to think"

With its concise and (hopefully) memorable API, Observable Plot lets you try out ideas quickly. You can make a meaningful chart with as little as one line of code. Yet Plot is still powerful and expressive when you need it. Plot is highly configurable and supports interaction with minimal fuss through Observable dataflow. And Plot is designed to be extended — we can't wait to see where the community takes it.

Plot vs D3

• Plot not intended as a "replacement" for D3

Plot is informed by ten years of maintaining D3 but does not replace it. We continue to support and develop D3, and recommend its low-level approach for bespoke *explanatory* visualizations and as a foundation for higher-level *exploratory* visualization tools. In fact, Plot is built on D3! Observable Plot is more akin to Vega-Lite, another great tool for exploration. We designed Plot to pair beautifully with Observable: to leverage Observable dataflow for fluid exploration and interaction. However, Plot does not depend on Observable; use it wherever you like.

See <u>https://observablehq.com/@observablehq/introducing-observable-plot</u>

15

Demonstration: Prototyping with **Plot**

Expressiveness vs Usability Revisited

Mike Bostock, 2017 Keynote:

- [Code-free] visualisation tools sacrifice generality for greater efficiency performing particular tasks
- Code has unparalleled expressiveness; it is the most general tool we have
- A medium for discovery *must* be general. Creativity requires composition

RAW Graphs

- "The missing link between spreadsheets and data"
 - Instantly maps data variables to visual channels
 - Quick and convenient!
 - Uses D3 under the hood
- No programming knowledge required
 - Friendly user interface
 - However, limited layouts available
 - Doesn't support detailed (low-level) customisation
 - BUT can build custom models with basic understanding of D3

Demonstration: Prototyping with <u>RAW Graphs</u>

Prototyping with Python (Pandas), Sheets & PowerPoint

A 'Heatmap Matrix' for Categorical Data

Building on Rocha & da Silva, 2018

Data Wrangling with Python

- I tend to use Python for cleaning & pre-processing data
 - Popular alternatives include R, JavaScript & Excel/Sheets
- Pandas *DataFrames* are especially useful for handling datasets with many variables (multi-dimensional data)
 - Rows = data items
 - Columns = variables

```
import pandas as pa
def remove_duplicates(input_file):
    tweets = pa.read_csv(input_file, sep="\t")
    print("Original size: ", len(tweets))
    unique_tweets = tweets.drop_duplicates(subset='id', keep="first")
    print("New size: ", len(unique_tweets))
    unique_tweets.to_csv("rmt-corpus-deduplicated.csv", sep="\t", index=False)
```


10. Add tooltips in PowerPoint

Demonstration: <u>Heatmap Spreadsheet</u>

Adding Interaction with PowerPoint

- Can create Tooltips and Buttons
 - Buttons are just clickable regions that point to different slides
 - Simply create (transparent) shapes, then press 'Ctrl + K'
- Other controls in 'Developer' mode

Choosing the 'right' tool

- There is no single visualisation tool that is optimal for all kinds of users or for all situations!
- Relevant factors include:
 - Your own skills, preferences and experience (find tools that work for you!)
 - Nature of the data (type, size, shape/structure, overall complexity)
 - Nature of the visualisation (exploratory vs explanatory, static vs interactive, stand-alone vs dashboard, responsive vs fixed dimensions)
- Sometimes you need a mixture of tools
 - For instance, one for pre-processing, a couple for creating different components, another for bringing everything together

Summary – where does each tool shine?

- Tableau: Interactive dashboards with multiple connected components
- D3: Bespoke visualisations, creative freedom
- **Observable Plot:** Preliminary exploration, common chart types, reusable code snippets
- RawGraphs: Rapid prototyping of rarer chart types (e.g. Alluvial diagrams)
- Microsoft PowerPoint + Google Sheets: Useful for developing proofof-concepts, surprisingly versatile
- Important to think about the constraints that are imposed on us, as vis designers, by the tools that we use!

Resources

- Tableau
 - <u>Getting Started</u>
 - Training Videos
 - 2023 Competition Entries
- D3
 - Peter Cook's D3 in Depth
 - <u>Shirley Wu's Introduction</u>
 - <u>UBC's InfoVis Course</u>
 - <u>Mike Bostock's D3 Gallery</u>
 - Prototyping in D3
 - <u>D3 API</u>

- Observable
 - Introduction
 - <u>Twitter</u>
 - YouTube Tutorials
- Plot
 - Introduction
 - Eric Lo's Examples
- Python
 - Python Visualisation Libraries
 - Data Wrangling with Pandas

29

Academic Papers

- Stolte, C., Tang, D., & Hanrahan, P. (2002). **Polaris**: A system for query, analysis, and visualization of multidimensional relational databases. IEEE Transactions on Visualization and Computer Graphics, 8(1), 52-65.
- Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3: data-driven documents. *IEEE transactions on visualization and computer* graphics, 17(12), 2301-2309.
- Satyanarayan, A., Moritz, D., Wongsuphasawat, K., & Heer, J. (2016). Vegalite: A grammar of interactive graphics. *IEEE transactions on visualization and computer graphics*, 23(1), 341-350.
- Mauri, M., Elli, T., Caviglia, G., Uboldi, G., & Azzi, M. (2017). **RAWGraphs**: a visualisation platform to create open outputs. In *Proceedings of the 12th biannual conference on Italian SIGCHI chapter* (pp. 1-5).

23/03/2023

Thank you!

31