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Abstract—Analysts are often interested in understanding the
association between variables within a dataset. This paper de-
scribes a set of techniques for augmenting the Heatmap Matrix,
which represents pairwise intersections of categorical variables.
The proposed extensions include adapting the design and layout
of the matrix to enhance its readability, expanding the number
of metrics that can be presented, displaying matching records in
a coordinated table view, and embedding the Chi-square test of
independence. These features are demonstrated on two datasets
using the empirical prototype that has been developed.

Index Terms—categorical data, discrete data, heatmap matrix,
multidimensional data, contingency tables, cross-tabulation

I. INTRODUCTION

Categorical variables are widely used in real-world datasets
across a multitude of domains, ranging from business to
biomedical science [1]. However, visualisation techniques for
categorical variables have received limited attention compared
to those for continuous data [2], with relatively few techniques
supporting the exploration of more than a handful of categori-
cal variables at the same time [3]. Consequently, there are clear
opportunities for advancing the state-of-the-art in categorical
data visualisation, including developing novel techniques and
improving upon existing ones. This paper adopts the latter
approach, contributing a set of extensions for enhancing the
readability, functionality and scalability of the Heatmap Matrix
[4], [5], which represents multiple categorical variables by
breaking them down into pairwise relations. The proposed
extensions collectively provide more nuanced insights into the
association between categorical variables, enabling the viewer
to detect patterns at both a local and global level that might
otherwise be missed.

Given the focus of this paper, a more detailed description of
the heatmap matrix [4] is in order. This technique provides a
concise visual summary of all possible two-way contingency
tables for a given set of categorical variables. The plot is a
matrix of heatmaps whose rows and columns are categories
grouped by variable, such that each heatmap ‘panel’ relates
to a distinct pair of variables, and each ‘cell’ represents the
intersection of two categories. To aid readability, the categories
are ordered consistently along both axes. In previous work, the
heatmap matrix has only been used to show the frequency of
occurrence of the corresponding categories; however, as this

paper will show, other information can also be fruitfully en-
coded. The technique facilitates quick identification of salient
patterns and values, accentuating outliers, as well as large
numbers of cells with very low or high frequencies. Since
each heatmap can be taken as an independent unit, patterns
can be discovered at both a local (panel) and global (matrix)
level. For instance, a user may wish to analyse each panel one
at a time, locate the highest and lowest values across the entire
matrix, or focus on specific categories or variables of interest
by isolating particular rows or columns of the matrix.

While the original heatmap matrix was static, the authors
describe several interactive enhancements in later work [5].
These include: four methods for reordering categories ac-
cording to different seriation algorithms; filtering based on
both Spearman’s correlation coefficient and association rules;
bucketing of continuous variables by producing bins of equal
width or frequency [6]; and the choice of a local or global
colour mapping to highlight patterns within or across the
matrix, respectively. However, without a publicly available
prototype or a more detailed description of the user interface, it
is not clear how these features are operationalised. This paper
focuses predominantly on novel features that are intended to
supplement, rather than replace, those mentioned in [5].

In terms of scalability, the size of a heatmap matrix is
proportional to the number of categories in the display, with
higher-cardinality variables occupying more space. The num-
ber of data items (records) has no bearing on the dimensions
of the visualisation, as this is conveyed through the colour of
the heatmap. Although it is theoretically possible to generate a
heatmap matrix for any number of categories or variables, the
visualisation is in practice restricted by the screen resolution.
When drawing heatmap matrices, datasets comprising multiple
high-cardinality variables pose a significant challenge [5],
which is a key consideration for this work.

II. RELATED WORK

Most techniques for visualising categorical data—including
the heatmap matrix—are based on contingency tables [7]. Al-
sallakh et al. [8] classify these methods into three main types:
frequency representations, deviation representations, and inter-
mediate representations. Frequency representations display the
observed frequencies in a contingency table directly, typically



Fig. 1. Design overview of the Heatmap Matrix Explorer, which represents the intersection of every pair of categories in a dataset. This example shows the
Titanic dataset, consisting of 4 categorical variables and 10 categories.

using an area-proportional encoding. Prominent examples in-
clude Mosaic Plots (without residual-based shading) [9] and
Parallel Sets [10], which are described in further detail below.
The heatmap matrix also falls under this category, though it
uses colour rather than area to encode frequency, sacrificing
precision for greater scalability [5].

Deviation representations visualise differences between ob-
served and expected frequencies. Examples include Asso-
ciation Plots [11], Sieve Diagrams [2] and the dot-based
Contingency Wheel [12]. Section V shows how the heatmap
matrix can be extended to support deviations as well as fre-
quencies; the two approaches are complementary, not mutually
exclusive.

Finally, intermediate representations convert categories into
numerical values before visualising them. Correspondence
Analysis (CA) identifies associations between the cells in a
contingency table by projecting points into a low-dimensional
space [13].

Matrix-based visualisations for representing every pair of
variables in a dataset constitute another class of relevant
techniques. These include the Scatterplot Matrix (SPLOM) for
continuous data [14], together with its enhancements [15]–
[17]; the Mosaic Matrix for categorical data [18]; and the
Generalised Pairs Plot [19] and GPLOM [20] for dealing
with mixed data types (first suggested in [18]). These latter
representations use different kinds of charts depending on the
variable types that are present in each pair. While there is
a range of options for representing two categorical variables

(including Mosaic Plots [9], Fluctuation Diagrams [21] and
Faceted Bar Charts [22], as posited in [19]), GPLOMs use a
heatmap for simplicity. However, since GPLOMs use a fixed
panel size for all pairings, regardless of variable cardinality,
these heatmaps are not always readable.

Mosaic Matrices [18] are specifically designed for visu-
alising pairs of categorical variables. In this representation,
variables are crossed among themselves in a matrix, and a
Mosaic Plot is shown in each of the resulting panels, with
variable names displayed along the main diagonal. The size
of each tile in a Mosaic Plot is proportional to the cell
frequencies, and the tiles are often also coloured according to
Pearson residuals [23], yielding a blended frequency/deviation
representation. These residuals provide an indication of the
goodness-of-fit of the model of independence, and show which
values occur more or less often than expected. Similar to
GPLOMS, however, Mosaic Plots become difficult to read
when visualising categorical variables with high cardinality
[20]. Furthermore, Mosaic Matrices are generally restricted
to visualising three or four variables at a time, due to space
limitations [18].

Although originally intended for visualising hierarchies of
variables, Parallel Sets [10] can also be used to show pairwise
relations between categorical variables [24]. However, as the
number of variables increases, so too does the number of
repeated bands or small multiples needed to explicitly capture
all possible relationships.

Reflecting on the various strengths and weaknesses of



these techniques, the heatmap matrix offers a more compact
alternative for exploring pairwise associations, on which this
paper seeks to build.

III. EMPIRICAL PROTOTYPE

The following sections describe the fundamentals of the
prototype that has been developed to extend the capabilities
of the heatmap matrix. An overview of the Heatmap Matrix
Explorer is given in Fig. 1, showing the familiar Titanic dataset
[25]. The design consists of four components: the Matrix View
(centre) containing the heatmap; the Selection Menu (left-
hand side) for filtering the data and merging categories; the
Main Menu (right-hand side) for customising the heatmap; and
the Linked Table View (bottom) showing underlying data for
selected cells. While the Titanic dataset is used as the primary
example throughout the paper, a second, more complex dataset
is examined in Section VIII to provide a clearer indication of
the technique’s scalability.

IV. MATRIX VIEW

At the heart of the prototype is the Matrix View where the
main visualisation is displayed. While this view is similar to
the original heatmap matrix [4], there are several key differ-
ences. In previous work, the design had a black background
and variables were separated with grey grid lines; in contrast,
the new design uses a white background and replaces these
grid lines with white space. This helps to achieve a minimalist
aesthetic that is easier on the eye [26]. The variable groupings
can be perceived solely through the spacing between panels,
in accordance with the Gestalt Law of Proximity [27]. In
addition, all cells have been given a thin white border to help
distinguish individual values. Category labels for columns are
rotated 45 degrees for readability, and a legend has been added
to indicate the exact range of values present in the heatmap
(for global mappings) or the general direction of the encoding
(for local mappings). Like in the original design, all cells are
square-shaped, so as not to privilege one axis (variable) over
the other.

Another point of difference is the main diagonal of the
matrix. In the updated design, intra-variable cell frequencies
are replaced with a single grey ‘box’ showing the name of
the corresponding variable, akin to how variables are labelled
in the Mosaic Matrix [18]. The motivation for this is two-
fold. First, it removes redundant and potentially distracting
information. At least half of the cells in diagonal panels repre-
sent intersections that are structurally impossible, assuming the
categories within each variable are mutually exclusive. If this
is the case, the only cells that can occur represent categories’
marginal frequencies; however, such data is univariate rather
than bivariate, and thus has a different interpretation from the
rest of the matrix. Of course, information regarding individual
category frequencies may still be useful, but this can be
displayed in a less obtrusive manner, by means of a tooltip;
see Fig. 3. The second reason for this change is that labelling
variables along the main diagonal frees up space, since the

Fig. 2. Example of a cell-level tooltip and associative highlighting. The user
is currently hovering over the cell representing children in second class. The
heatmap itself shows cell Chi-square values (sequential palette, local scope)
for the Titanic dataset.

variable names are included within the matrix itself and do
not need to be added as external row or column labels.

Two additional features supported by the prototype are
tooltips and associative highlighting1, which work together
to provide “details-on-demand” [28]. There are two different
kinds of tooltips, depending on whether the user hovers over
a cell (Fig. 2) or one of the variable boxes along the main
diagonal (Fig. 3). In the former case, the tooltip displays
rounded values for all seven supported metrics (Section V-A),
including observed frequency. Bold text is used to indicate the
metric(s) that are currently encoded in the heatmap. If the user
hovers over one of the variable boxes, the tooltip instead shows
the distribution of category frequencies in the form of a bar
chart. Categories are sorted in descending order of frequency,
regardless of their position in the heatmap.

Associative highlighting helps the user to see which cat-
egories have been selected, and which variables they relate
to. When the user hovers over a cell, not only does a tooltip
appear, but the cell is given an orange outline, and the two
related variables are highlighted orange. The corresponding
row and column labels are emphasised in bold, enabling the
user to accurately pinpoint their position within the matrix,
which is not trivial for more complex datasets.

V. MAIN MENU

The Main Menu allows the user to customise the heatmap
matrix in simple yet powerful ways. There are three sub-menus
that control different aspects of the visualisation: cell-level
properties, panel-level aggregation and general appearance of
the display. The first two sub-menus cannot be used at the
same time (they provide different modes for exploring the

1This term is used in a different sense from [20].



Fig. 3. Tooltip showing a bar chart of category frequencies for the “Class”
variable.

matrix), whereas the third sub-menu is compatible with both
of the others, and thus always available. All features supported
by these menus are novel, except for the scope setting,
which was proposed in [5]. Together, these controls provide
a diverse range of complementary views that encourage users
to examine the data from fresh and varied perspectives.

A. Cell-Level Properties

In the same way that contingency tables can display dif-
ferent measures of association, the heatmap matrix is not
confined to visualising only observed frequency. The cell-level
menu supports five additional metrics, from row percentages
to Pearson residuals, which can be used in combination to
provide additional insights and supporting evidence about the
nature of association between categorical variables. Within
the Heatmap Matrix Explorer, users must select either one
or two metrics to control the colour of the heatmap, and can
optionally specify a third metric (or one of the same metrics)
to annotate the cells with the corresponding numerical values.

For metrics defining the colour of the heatmap, the user
must specify a colour palette (either sequential or diverging)
and a scope (either local or global). Sequential colour palettes
accentuate high values (or low values if the scale is reversed),
whereas diverging colour palettes emphasise values at both
ends of the spectrum. When the user chooses a local scope,
the colour of each panel is scaled according to its local
minimum and maximum values, rather than the extremities
across the entire matrix. In general, a local mapping seems
more appropriate than a global one, since, unless all variables
happen to have the same cardinality, the panels in the heatmap
will contain different numbers of cells, and individual cells
within smaller panels are more likely to draw higher counts.

The metrics that appear in each drop-down menu are
detailed below.

• Observed Frequency shows the frequency of occurrence
in each cell, which is the same information encoded in the
original heatmap matrix [4]. If all categories are shown,
the cells in each panel sum to the total number of data
items, and each row or column sums to the category
frequency. This is the default setting, useful for obtaining
a preliminary overview of the data but limited in terms
of measuring associations.

• Expected Frequency displays the quantities that would be
expected in each panel if there were no association be-
tween the two variables. This is calculated by multiplying
each cell’s row total by its column total, then dividing by
the total number of observations.

• Row Percentages and Column Percentages display the
relative contribution of the observed frequency of each
cell to the local row or column total, respectively. These
metrics reveal how the categories belonging to one vari-
able are distributed with respect to the other. For Row
Percentages, each cell shows P (X | Y ), where X is the
category on the x-axis and Y is the category on the y-axis.
The correct interpretation is what percentage of Y is X?
Column Percentages shows the inverse, i.e., P (Y | X).
The matrix generated by either metric is the transpose of
the other.

• Pearson Residuals measure, for each cell, the magnitude
and direction of the deviation from independence, ad-
justed for the expected variability. They are calculated
by dividing the difference between the observed and
expected frequencies by the square root of the expected
frequency. This provides a quick visual summary of over-
and under-represented pairs of categories. Cells with
large residuals (in either direction) may be indicative
of patterns or relationships between two variables that
warrant further investigation. Pearson Residuals are best
suited to a diverging colour palette (preferably one that
is continuous [29]), since this emphasises both positive
and negative residuals.

• Cell Chi-Square Values (shown in Fig. 2) denote the indi-
vidual contribution of each cell to the overall Chi-square
(χ2) test statistic (see Section V-C). The cell values are
calculated by taking the squared difference between the
observed and expected frequencies, and dividing by the
expected frequency. A cell Chi-square value less than one
means that the observed and expected frequencies are rea-
sonably close to each other, whereas values much larger
than one indicate a disparity between the two. While
Pearson residuals show similar information, examining
the individual cell values can help to identify outliers
or unusual patterns that may not be apparent from the
residuals alone, and vice versa.

One salient design consideration for any heatmap is the
colour palette, which affects the range of values that can
be seen [26], [30], [31]. The Heatmap Matrix Explorer uses
sensible default colours, including Seaborn’s [17] perceptually
linear “flare” colourmap for a single sequential metric, a blue-
white-red palette for a single diverging metric, and Cynthia
Brewer’s nine-class bivariate maps2 when two metrics are
selected. Since the bivariate heatmap only has nine distinct
values, it sacrifices precision for general readability. Neverthe-
less, exact values are still accessible via interactive tooltips.
An example is shown in Fig. 4, which simultaneously encodes
observed frequency and Pearson residuals, such that darker

2http://www.personal.psu.edu/cab38/ColorSch/Schemes.html



Fig. 4. Triangular heatmap matrix showing both observed frequency (se-
quential palette, local scope) and Pearson residuals (diverging palette, global
scope) for the Titanic dataset. The text labels also show observed frequency.

cells represent more frequent values, and blue, grey and
orange are used for negative, neutral and positive residuals,
respectively. This encodes similar information to a Mosaic
Matrix, minus the alignment of tiles, in a more scalable form.

Unlike its predecessor [4], by default, the Heatmap Matrix
Explorer does not display numerical values in each cell. Re-
moving the text labels makes it easier to glean general patterns,
while still allowing users to access tooltips. However, text
labels may still be useful in some scenarios, such as in static
(e.g., print) environments. The text drop-down menu supports
the same metrics outlined above, except observed frequency is
split into “Counts” and “Proportions”, for which the colours
are the same. Proportions display the joint probability of the
corresponding categories, P (X ∩ Y ), by dividing the counts
by the total number of observations.

B. Display Settings

Among the general display settings is a “Reset” button that
restores the default settings and reverts to the original dataset.
There are also inputs for changing the type of matrix and the
appearance of the row and column labels, which are explained
below.

The prototype allows the user to switch between a square
or triangular matrix (see Fig. 2 and Fig. 4 for examples of
each). In a square matrix, all pairs of categories are represented
twice, once on each axis, whereas a triangular matrix removes
this redundancy. As with SPLOMs, a square matrix can be
helpful for identifying patterns and trends related to particular
variables of interest. This is because the user can focus on a
single horizontal or vertical band of the matrix, rather than
having to divide their attention between a mixture of rows
and columns, while simultaneously transposing parts of the
display.

A triangular matrix, on the other hand, makes the display
less cluttered and safeguards against novice users misreading

Fig. 5. Panel-level test results for the Titanic dataset, including the Chi-
square statistic, degrees of freedom, p-value and Cramér’s V. Cell colour is
proportional to the strength of the association.

the visualisation, e.g., by thinking that each value occurs twice.
The outer variables in a triangular matrix are special cases as
all panels appear in a straight column or row, like they would
in a square matrix. As a result, the left-most variable only
needs column labels and the right-most variable only needs
row labels.

Regarding the appearance of labels more generally, a tick-
box enables the heatmap to be drawn with or without shaded
row and column labels. If applied, alternating shades of
grey are used to distinguish categories belonging to adjacent
variables, as shown in Fig. 6.

C. Panel-Level Aggregation

Two widely used statistical techniques for analysing cate-
gorical data are the Chi-square (χ2) test of independence and
Cramér’s V (ϕc). These techniques are often paired together to
establish 1) whether there is a significant association between
two variables and 2) how strong it is. Fig. 5 shows how this
information can be integrated into the heatmap itself, providing
a concise visual summary of the extent to which different
variables are associated. This feature is inspired by correlation
matrices for quantitative data [32], especially those which
visualise statistical significance [33]. Note that, unlike other
views, the cells within each panel are merged, because both
measures apply to the variable level rather than the category
level.

Importantly, test results are only calculated and displayed
if the four basic Chi-square test conditions are thought to be
satisfied. The first requirement is that both variables must be
categorical. Since only categorical variables are featured in the
heatmap matrix (with the possibility of binning continuous
variables before the visualisation is generated), this require-
ment is automatically fulfilled. Secondly, observations must be
independent. When the user first ticks the box to “Display Chi-
Square and Cramér’s V”, a dialog box appears asking them



to verify whether this is the case. This is the only check that
cannot be automated, since it is highly context-dependent. If
the user selects “No” (i.e., observations are not independent),
a further message appears informing them that, unfortunately,
the test cannot be applied. Otherwise, test results are shown
for panels that satisfy the two remaining conditions, namely
that categories within each variable are mutually exclusive,
and that expected frequencies exceed one in all cells and are
at least five in 80% of cells.

If the user confirms independence of observations and the
remaining test conditions are satisfied, the corresponding panel
is coloured either red or blue, depending on the test result.
Red indicates a significant result, whereas blue does not. The
shade of red is proportional to the strength of the association,
as measured by Cramér’s V: a number between 0 and 1,
with larger/darker values indicating a stronger association. For
completeness, the Chi-square statistic, degrees of freedom, p-
value and Cramér’s V are all reported in the corresponding
panel. Users can also change the significance level in the
text box from its default value of 0.05; this updates the
test results accordingly. The legend is interactive, such that
hovering over one of the values isolates all variable pairs with
the corresponding effect size.

If any of the test conditions for a pair of variables is violated,
the panel is coloured grey. An error message explaining the
reason why the test result was not valid is shown in the tooltip.
This is helpful even for datasets where majority of the panels
are grey, because it shows the user that the Chi-square test is
not an appropriate technique for such data, while perhaps still
revealing a handful of associations that are significant.

Embedding Chi-square test results into the plot in this way
has a number of benefits: it removes the burden of manual
computation (which is particularly onerous for datasets with
many variables), visually reinforces correct interpretations, and
enables all relevant data to be conveniently displayed in one
place. Furthermore, the results in this view can be effectively
coupled with the cell-level Chi-square values and Pearson
residuals discussed in Section V-A [34]. For instance, Fig.
5 shows that there is a relatively strong association between
the variables “Sex” and “Survived”, and the cell-level metrics,
including Fig. 2, suggest that this is due to more females
surviving than would be expected by chance, and more men
dying. This aligns with the societal norm of prioritising the
rescue of “women [and children] first”.

VI. LINKED TABLE VIEW

The linked table view, shown in Fig. 1, connects the heatmap
with the underlying data. The user can click on a cell to see
the corresponding data items in the table beneath the matrix.
Upon being clicked, the cell is given a black border to show
that it has been selected. By default, all variables are displayed
in the table, with any unique, ‘ID-like’ variables being shown
to the immediate left of all others. For example, in Fig. 1, the
user has clicked on a cell representing female crew members
and the corresponding records, including people’s names, are
displayed in the table. The user can navigate with the scroll

bar or expand the table to view records that are not currently
visible. Additionally, the table columns can be hidden or
reordered. The number of rows in the table matches the cell’s
observed frequency; there are 23 female crew members and
thus 23 records in the table. This feature is most useful if
the dataset contains one or more ‘ID-like’ columns, and if a
large proportion of cells have relatively low counts, so that the
information presented in the table can be readily absorbed.

While not currently supported, it would be possible to
generate supplementary visualisations from the conditional
table data. One could imagine hovering over one of the column
headings to display a bar chart of the number of occurrences
in the table of each category from the corresponding variable.
For example, hovering over the “Sex” column would show
how many female crew members survived, P (Y es | Female∩
Crew), and how many died, P (No | Female ∩ Crew).

VII. SELECTION MENU

For complex datasets with a large number of categories and
variables, it may not be feasible to view everything at once.
A better approach might be to break down the dataset into
smaller units of interest, and rotate among these. As shown in
Fig. 1 and Fig. 6, the Selection Menu consists of an expandable
list of checkboxes, with variables at the top level (whose
cardinalities are indicated in parentheses) and categories nested
inside them. The user can click on the checkboxes to show
or hide variables in the matrix. Variables that are currently
visible are shown with a black tick, and those filtered out
with a blue box. It is also possible to show, hide or exclude
individual categories, with three clicks required to return to
each state. Excluded categories are shown with a red cross
icon. The distinction between hiding and excluding a category
is that the former simply removes it from the display (without
affecting the rest of the matrix), whereas the latter removes
all data items associated with that category, likely resulting in
changes to other panels. For instance, removing children from
the Titanic dataset would update all panels to only include
information about adults, effectively resulting in a conditional
query: P (X ∩ Y | Adult), where X and Y are the variables
on either axis. The advantage of having the checkboxes is
that users can re-select categories that they previously hid or
excluded. “Select all” and “Clear” links are also available to
expedite variable and category selections.

Filtering via the Selection Menu is primarily intended for
analysing datasets with dozens of variables and/or categories
(e.g., census data). This feature is not necessary for relatively
simple datasets like the Titanic dataset, where all of the
variables and categories can be visualised at once. However,
even in such cases, the ability to exclude variables is helpful
for visualising conditional queries. Overall, the addition of
this menu increases the scalability of the heatmap matrix
technique, albeit by requiring the user to work with manually
defined subsets. Similar functionality could be added to other
pairwise techniques for categorical data, such as the Mosaic
Matrix [18].



Fig. 6. A more complex example of a heatmap matrix, showing information about Covid directives on Twitter. Some variables have been hidden, and two
categories have been excluded from the data, as indicated in the Selection Menu on the left-hand side.

Summary statistics at the top of the menu indicate the
proportion of variables and categories visible at any given
time, as well as how many data items have been excluded. It
might also be helpful to report statistics such as “Categories
shown for selected variables” (to exclude variables that the
user deems irrelevant) or the “(Average) number of categories
per variable”. These could all be visualised as stacked bar
charts or histograms, rather than being given as text labels.

The Selection Menu also provides a mechanism for man-
ually re-ordering the data in the heatmap, by dragging-and-
dropping the labels. The user can move variables, as well as
the categories within them. The order of rows in the matrix
mirrors the top-to-bottom ordering in the list of checkboxes,
and columns are ordered in the same way from left to right.
For instance, moving “Class” beneath “Age” in Fig. 1 would
make “Age” the top/left-most box, and dragging the category
“Crew” above “First” would make “Crew” the top/left-most
category within the “Class” portion of the matrix.

A final operation supported by the menu is merging existing
categories. The user can use Shift-click and Ctrl-click to select
multiple categories for a particular variable, then right click on
one of them to merge those categories. They are then given the
option to rename the newly formed category. The number of
categories is automatically reduced to reflect the number that
remain, with undo and redo functionality supported in case
the user makes a mistake or wishes to revisit a previous state.

VIII. COVID DIRECTIVES DATASET

All the examples given so far concern the Titanic dataset.
Fig. 6 shows a more complex example of a heatmap matrix,
illustrating a linguistics dataset comprising ten categorical

variables [35]. The data consist of directives used in tweets
featuring the hashtag “#covid19nz” (e.g., “Stay home!”). This
dataset was compiled to examine pragmatic and syntactic vari-
ables in relation to the stance of directives towards COVID-19
government measures in New Zealand, during the first nation-
wide lockdown. The user has hidden four variables from the
display, and removed two categories from “Stance”: “None”
and “Unclear”. This has resulted in 88 of the 754 directives
being filtered out of the heatmap. The matrix view shows
that there is one dominant pair of categories (or ‘flavour’ of
directive) in each and every panel. For instance, the panels for
“Stance” and “Politeness” show that those in most agreement
with the status quo (“pro”) were also least concerned to
mitigate their directive with polite markers (“no redress”).
“Stance” and “Verb” exhibit greater variation than any other
pair of variables, with main verbs and modal verbs being
relatively common across all three stance categories.

IX. LIMITATIONS

The Heatmap Matrix Explorer has some limitations that
need to be acknowledged. First, it does not incorporate several
of the useful interactive features described in [5], such as
automated methods for sorting the matrix, which would be
useful for revealing structural patterns, or the ability to bin
continuous values. Second, a lot of the design decisions are
based on the authors’ subjective preferences and require more
comprehensive user testing. For instance, the thin white bor-
ders around cells might actually be a distraction for perceiving
patterns within and between different panels. Third, displaying
cell Chi-square values from the drop-down menu for an invalid
Chi-square test may be problematic, and there is currently



nothing to safeguard against this. Furthermore, the Chi-square
test and Cramér’s V are not well suited to ordinal data, as
they do not consider ordering information. The datasets in
this paper contain mostly nominal variables, but a Spearman
correlation or Kendall’s Tau would be more appropriate for
panels involving strictly ordinal data. While there are, in fact,
several alternative methods for analysing categorical data, the
bigger picture is that such tests can be effectively embedded
into visualisations to aid the viewer’s understanding.

X. CONCLUSIONS AND FUTURE WORK

This paper has proposed a structured set of extensions for
augmenting the heatmap matrix, which are realised in an em-
pirical prototype called the Heatmap Matrix Explorer. These
extensions improve the readability, versatility and scalability
of the heatmap matrix technique. The revised design removes
non-bivariate cells, re-positions variable labels, removes dense
grid lines and has a white background. Interactive drop-down
menus allow the user to colour and label cells according
to several metrics, including row percentages and expected
frequencies. The high-level overview for the Chi-square test
helps the viewer to quickly detect patterns and establish which
variables have the strongest associations. Examining these
findings in relation to cell-level metrics like Pearson residuals
and individual Chi-square values can then provide more de-
tailed information about specific cells driving the association.
The Linked Table View provides a direct and convenient
link to individual records, and the Selection Menu enables
exploration of more complex datasets than was previously
possible, by allowing controlled yet flexible filtering. Overall,
these extensions provide greater insight into the relationships
between categorical variables, by encouraging the user to
explore the data from a range of perspectives, and empowering
them to uncover more complex patterns in the process.

Future work could centre around turning the empirical
prototype into a web-based tool that allows users to visualise
their own categorical datasets, and conducting in-depth user
testing. Two further avenues of inquiry are dealing with miss-
ing values, which may differ across variables, and supporting
nested heatmaps for hierarchical categorical data.
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contingency wheel: Scalable visual analytics of large categorical data,”
IEEE Trans. Vis. Comput. Graphics, vol. 18, no. 12, pp. 2849–2858,
2012.

[9] J. A. Hartigan and B. Kleiner, “A mosaic of television ratings,” Am.
Stat., vol. 38, no. 1, pp. 32–35, 1984.

[10] R. Kosara, F. Bendix, and H. Hauser, “Parallel sets: Interactive explo-
ration and visual analysis of categorical data,” IEEE Trans. Vis. Comput.
Graphics, vol. 12, no. 4, pp. 558–568, 2006.

[11] D. Meyer, A. Zeileis, K. Hornik, and F. Leisch, “Visualizing indepen-
dence using extended association plots,” Proceedings of DSC 2003,
2003.
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