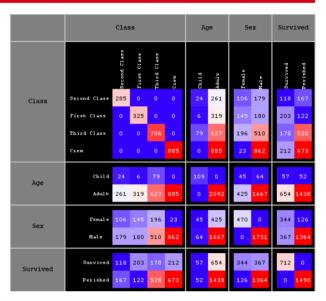


Motivation & Aim

- Categorical variables are common in real-world datasets (Agresti, 2013; Friendly & Meyer, 2016)
- Few visualisation techniques facilitate *multiple* categorical variables
- Existing techniques have limited scalability and interaction, and are under-developed compared to those for continuous data
- Our aim is to build upon the strengths of an existing technique: the *Heatmap Matrix*

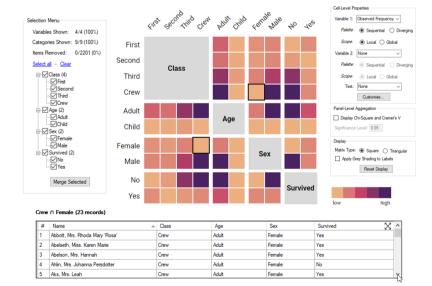

WHERE THE WORLD IS GOING

waikato.a

Heatmap Matrix (Rocha & da Silva, 2018; 2022)

- Displays all possible n x m contingency tables as heatmaps
- Categories are grouped by variable
- Each (non-diagonal)
 heatmap 'panel' represents
 a distinct pair of variables
- Each 'cell' shows the frequency of the corresponding categories

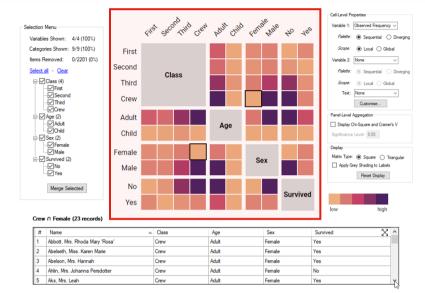
waikato.ac.nz


WHERE THE WORLD IS GOING

3

Heatmap Matrix Explorer

- Matrix View
- Main Menu
- Selection Menu
- Linked Table
 View

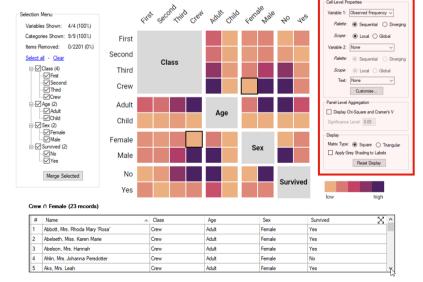

vaikato.ac.nz

WHERE THE WORLD IS GOING

Heatmap Matrix Explorer

- Matrix View
- Main Menu
- Selection Menu
- Linked Table View

vaikato.ac.nz

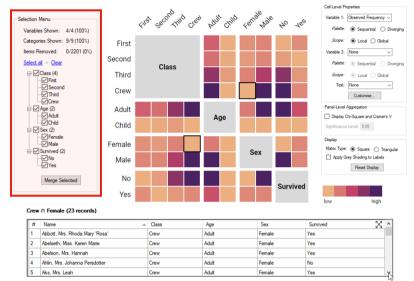

5

WHERE THE WORLD IS GOING

Heatmap Matrix Explorer

THE UNIVERSITY OF WAIKATO
Te Whare Wananga o Waihato

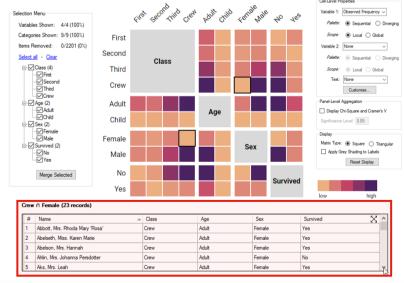
- Matrix View
- Main Menu
- Selection Menu
- Linked Table
 View


vaikato.ac.nz

WHERE THE WORLD IS GOING

Heatmap Matrix Explorer

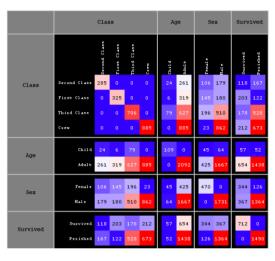
- Matrix View
- Main Menu
- Selection Menu
- Linked Table View

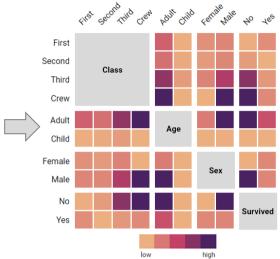

waikato.ac.nz

WHERE THE WORLD IS GOING

Heatmap Matrix Explorer

- Matrix View
- Main Menu
- Selection Menu
- Linked Table
 View

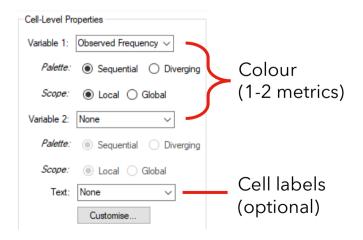



vaikato.ac.nz

WHERE THE WORLD IS GOIN

Matrix View: Layout Refinements

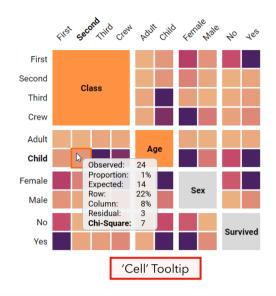
waikato.ac.nz


9

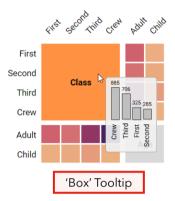
WHERE THE WORLD IS COME

Main Menu: Supported Metrics

- 1. Observed Frequency
- 2. Expected Frequency
- 3. Row Percentages
- 4. Column Percentages
- 5. Pearson Residuals
- 6. Cell Chi-Square Values

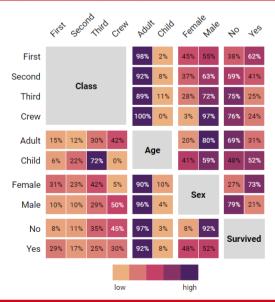


waikato.ac.nz


WHERE THE WORLD IS GOING

Tooltips & Associative Highlighting

- Provides details-on-demand (Shneiderman, 1996)
- Helps to orient the viewer


waikato.ac.nz

WHERE THE WORLD IS GOING

11

Row Percentages

- Rows within each panel sum to 100%
- Each cell shows P(X|Y), where X and Y are the categories on each axis
- Interpretation: What percentage of Y is X?
- "Column Percentages" is simply the transpose

waikato.ac.nz

WHERE THE WORLD IS GOING

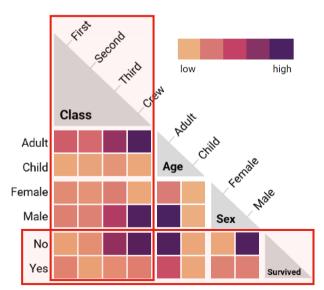
Pearson Residuals

THE UNIVERSITY OF WAIKATO
Te Whare Wananga o Washato

- Shows deviations from independence
- Formula: $r_{ij} = (O_{ij} E_{ij}) / \sqrt{E_{ij}}$
- Diverging colour palette shows both magnitude and direction, like in a Mosaic Matrix (Friendly, 1999)
- Large residuals (in either direction) may warrant further investigation

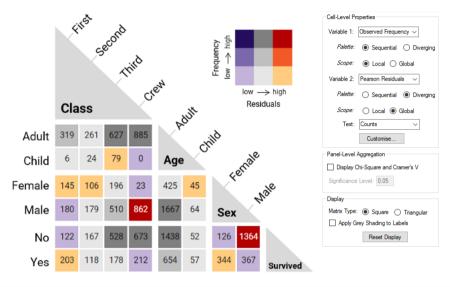
	Çifst	Section	nd Third	Clen	Adul	Child	, tell	Male	40	4e5
First	Class				1	-3	9	-5	-7	10
Second					-1	3	6	-3	-2	3
Third					-2	7	4	-2	2	-3
Crew					2	-7	-12	6	3	-4
Adult	1	-1	-2	2	Age		-1	1	1	-1
Child	-3	3	7	-7			5	-2	-3	4
Female	9	6	4	-12	-1	5	Sex		16	
Male	-5	-3	-2	6	1	-2			6	-8
No	-7	-2	2	3	1	-3	-11	6	Survived	
Yes	10	3	-3	-4	-1	4	16	-8		
				-12			16			

aikato.ac.nz


WHERE THE WORLD IS GOING

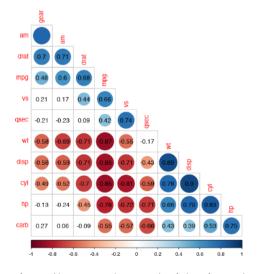
13

Triangular Matrix


- Less cluttered
- Removes redundant information
- Outer variables are special cases
- Square matrix is a better choice for comparing several categories or variables

aikato.ac.nz

Bivariate Colour Map


waikato.ac.nz

WILLIAM THE WORLD IS COIN

15

Visualising Statistical Tests

- Statistical test results can be represented graphically
- For instance, corrgrams (Friendly, 2002) can be used to show correlation coefficients and p-values for continuous data

https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html

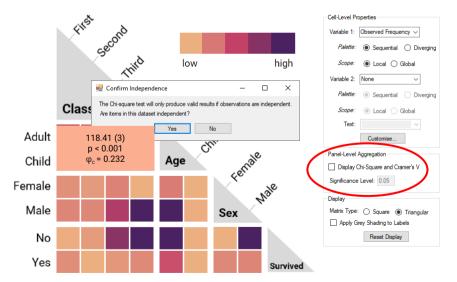
WHERE THE WORLD IS GO

Chi-Square Test of Independence

- 1. Is there a significant association between the two variables?
 - → Chi-square test
- 2. If so, how strong is it?
 - → Cramér's V

Four test conditions:

- 1. Categorical variables (preferably nominal)
- 2. Independent observations
- 3. Mutually exclusive categories
- 4. Expected frequency >0 in all cells >4 in at least 80% of cells


waikato.ac.nz

WHERE THE WORLD IS GOING

17

Panel-Level Aggregation

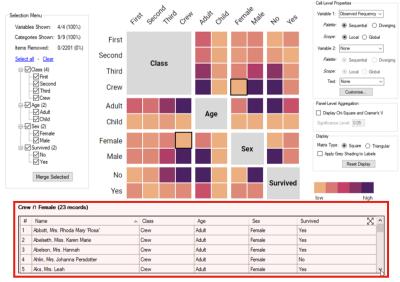


vaikato.ac.nz

Advantages of Panel-Level Aggregation

- 1. Visually reinforces correct interpretations
- 2. Removes burden of manual computation
- 3. Groups all test results in one place
- 4. Can be used to generate hypotheses about cell-level associations, which can then be explored in other views

waikato.ac.nz


WHERE THE WORLD IS GOING

19

Linked Table View

- Interface between heatmap and underlying data
- Useful for displaying IDtype values, especially when cells have low counts

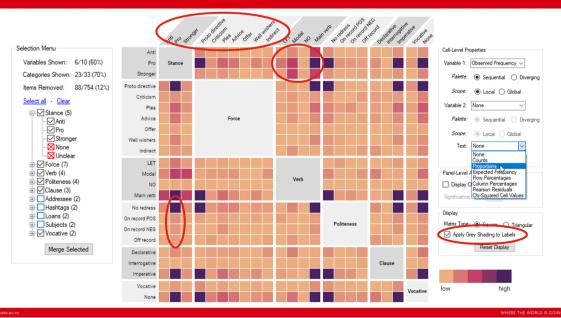
raikato.ac.nz

WHERE THE WORLD IS GOING

Covid Directives Dataset (Burnette & Calude, 2022)

• 754 directives (e.g. "Stay home!") from tweets containing #covid19nz

Variable	Categories				
Stance	against, pro, for stronger measures, neutral, unclear				
Force	advice, criticism, indirect, offer, plea, prototypical, well wishers				
Politeness	no redress, on record negative, on record positive, off record				
Verb	let, main verb, modal, no				
Clause	declarative, imperative, interrogative				
Addressees	explicit, implicit				
Hashtags	none, yes				
Loanwords	none, yes				
Subjects	individuated, non-individuated				
Vocative	none, yes				


waikato.ac.nz

WHERE THE WORLD IS COIN

21

Covid Directives Dataset (Burnette & Calude, 2022)

Selection Menu

- Enables users to work with manageable subsets
- Filter categories
 - show (black)
 - hide (blue)
 - exclude (red)

- Filter variables
 - show (black)
 - hide (blue)
- Merge categories
- Sort: Manually reorder categories and variables
- Undo/redo

waikato.ac.nz

23

WHERE THE WORLD IS GOING

Wrapping Up

- Our goal was to enhance the readability, functionality and scalability of the Heatmap Matrix
- Cosmetic changes include:
 - White background, removal of gridlines, fresh colour palettes, different use of main diagonal, triangular matrix design
- Novel features include:
 - Univariate or bivariate colour mapping for six different metrics
 - Visualising the Chi-square test and Cramér's V
 - Linked Table View for displaying matching records
 - Interactive filtering & data transformation via Selection Menu

waikato.ac.nz

WHERE THE WORLD IS GOING

24

Thank you for listening!

- Extending the Heatmap Matrix: Pairwise Analysis of Multivariate Categorical Data
 - David Trye, dqt12@students.waikato.ac.nz
- Thanks to the University of Waikato for funding this research

waikato.ac.n

WHERE THE WORLD IS GOIN

25

References

- Agresti, A. (2013). Categorical data analysis. John Wiley & Sons.
- Burnette, J., & Calude, A. S. (2022). Wake up New Zealand! Directives, politeness and stance in Twitter #Covid19NZ posts. *Journal of Pragmatics*, 196, 6-23.
- Friendly, M. (1999). Extending mosaic displays: Marginal, conditional, and partial views of categorical data. *Journal of Computational and Graphical Statistics*, 8(3), 373-395.
- Friendly, M. (2002). Corrgrams: Exploratory displays for correlation matrices. The American Statistician, 56, 316-324
- Friendly, M., & Meyer, D. (2016). Discrete data analysis with R: visualization and modeling techniques for categorical and count data (Vol. 120). CRC Press.
- Rocha, M. M. N., & da Silva, C. G. (2022). Heatmap matrix: Using reordering, discretization and filtering resources to assist multidimensional data analysis. https://doi.org/10.13140/RG.2.2.36619.57126
- Rocha, M. M. N., & da Silva, C. G. (2018). Heatmap matrix: A multidimensional data visualization technique. In Proceedings of the 31st Conference on Graphics, Patterns and Images (SIBGRAPI).
- Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information visualizations. In Proceedings 1996 IEEE symposium on visual languages (pp. 336-343). IEEE.

waikato.ac.n

WHERE THE WORLD IS GOING

Additional Slides

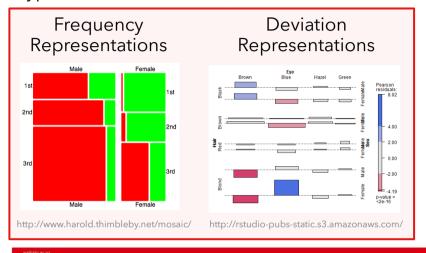
waikato.ac.n

27

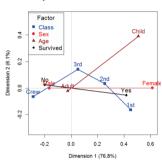
WHERE THE WORLD IS COIN

Interactive Enhancements (Rocha & da Silva, 2022)

- 1. Reorder Matrix: Sort heatmap to reveal patterns concerning:
 - all pairs of variables (all panels)
 - a single pair of variables (one chosen panel)
 - a subset of variables
 - all variables
- 2. Filter Data: Extract subset using Spearman's correlation coefficient and/or association rules
- **3. Discretize Variables:** Make continuous variables in the dataset categorical by creating bins of equal width/frequency
- **4. Adjust Scope:** Switch between a local (panel) or global (matrix) colour mapping
- BUT no prototype or GUI documentation available...

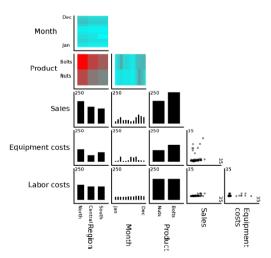

raikato.ac.n

WHERE THE WORLD IS GOING

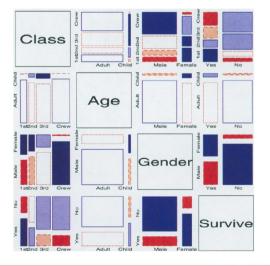

Related Work: Contingency Tables

Visualisations of contingency tables can be classified into three types (Alsallakh et al., 2012):

Intermediate Representations

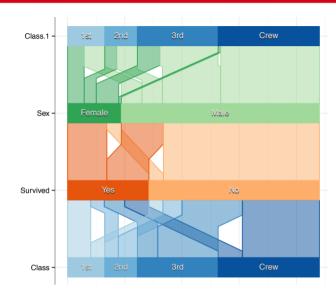

https://friendly.github.io/psy6136/

29


Related Work: Pairwise Techniques

GPLOM (Im et al., 2013)

Mosaic Matrix (Friendly, 1999)



WHERE THE WORLD IS GOING

Related Work: Pairwise Techniques

 Parallel Sets and Common Angle Plots can also be used to explore pairwise associations (Kosara et al., 2006; Hofmann & Vendettuoli, 2013)

waikato.a

31

Main Menu

Default Settings

Consists of three sub-menus:

- 1. Cell-Level Properties: Specify colour palette, scope, text labels
- Panel-Level Aggregation: Display Chi-square and Cramér's V
- Display Settings: Change shape, add grey shading

vaikato.ac.nz

WHERE THE WORLD IS GOING

Default Colour Palettes

Univariate:

Sequential

flare (seaborn)

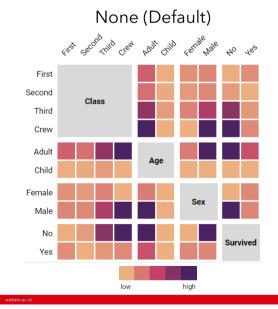
Diverging

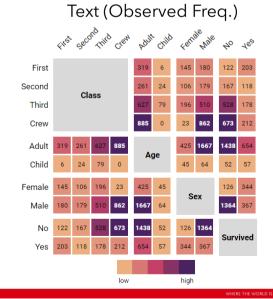
blue-white-red

Bivariate:

Cynthia Brewer's nine-class bivariate maps

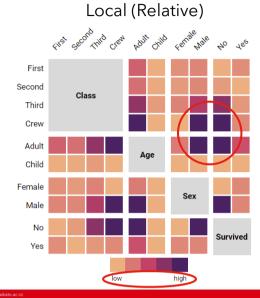
Less precise as fewer shades used for each variable


waikato.ac.nz


WHERE THE WORLD IS GOIN

33

Text Labels



34

Scope Comparison

Global (Absolute)

I Hab capecond Third creat Rout Child Remark to Jes Second

Third Crew

Adult Child Age

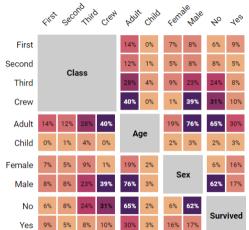
No
Yes

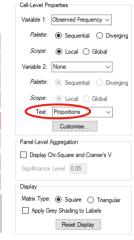
O 1667

35

Expected Frequencies

- Shows quantities expected if no association between variables
- Calculated using category frequencies
 - E = Row Total x Col Total / N

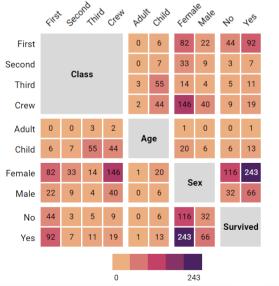

waikato.ac.nz


HERE THE WORLD IS GOING

Proportions

- For text labels, Observed Frequency is split into "Counts" and "Proportions"
- Cells show joint probability, P(X∩Y), where X and Y are categories on each axis

waikato.ac.nz


WHERE THE WORLD IS COIN

37

Cell Chi-Square Values

- Shows individual contribution of each cell to overall Chisquare statistic
- Formula: $\chi_{ij} = (O_{ij} E_{ij})^2 / E_{ij}$
- Large values indicate disparity between observed and expected frequencies

waikato.ac.nz

HERE THE WORLD IS GOIN

Covid Directives Dataset (Burnette & Calude, 2022)

39

Future Work

- Develop a web-based tool where users can upload their own categorical datasets
- Conduct user testing, update design accordingly
- Incorporate features proposed by Rocha & da Silva (2022), especially automated sorting and binning of continuous variables
- Add support for missing values, hierarchical data
- Bigger picture: New methods for visualising (and understanding!) statistical tests for categorical data

waikato.ac.n.

WHERE THE WORLD IS GOING