A Hybrid Architecture for Labelling Bilingual Māori-English Tweets

David Trye, Vithya Yogarajan, Jemma König, Te Taka Keegan, David Bainbridge & Mark Apperley

Research Aim

- To improve automatic language identification for Māori-English text
 - Focusing on (noisy) Twitter data

Contributions

Background

- Te reo Māori is often interspersed with English
 - Code-switching: 'multi-word stretches' (Poplack, 2018)

8:50 AM · Sep 2, 2022 · Twitter for iPhone

Loanwords / borrowings: (mostly) individual words

Tēnā koe, e hoa! Ngā mihi ki a koe mo retweet!

3:32 PM · Aug 22, 2018 · Twitter for iPhone

#TIKANGA A temporary rāhui has been put in place to protect sacred maunga in Ngāti Whatua from harmful firework activities

7:25 PM · Oct 29, 2022 · Buffer

Related Work

Extracting Māori text

Identifying Māori-English code-switching points

Key Research Question:

Can these two approaches be fruitfully combined into a hybrid system?

Rule-based approach (Te Hiku Media)

Machine learning-based approach

RMT System (Trye et al., 2022)

ML System (James et al., 2022a)

THE UNIVERSITY OF WAIKATO Te Whare Wananga o Waikato

The Bigger Picture

- Te reo Māori is fundamental to Māori culture
- Both Māori and New Zealand English are underrepresented in speech and language technology
 - There is a critical need for new systems and resources to address this (James et al., 2020, 2022a)
- Existing NLP tools are biased towards (certain varieties of) English (Hovy & Prabhumoye, 2021)
 - These tools often fail to recognise or correctly spell/pronounce Māori words ("Kaitaia" → "Car Tyre")
- Our goal is to reduce this inequity in NLP resources

Key Challenges

- Lexical overlap
 - Both Māori and English use the Roman script
 - 100+ interlingual homographs
 - Words that are spelt the same but have different meanings across languages (Dijkstra, 2007)
 - i, a, hope, here, more, kite, etc.
- Social media language
 - Internet slang, abbreviations, acronyms
 - haha, ktk (Māori equivalent of lol), amirite, cuzzie
 - Misspellings, typos
 - Neologisms
 - Emojis, hashtags, GIFs, etc.

RMT System

Based on rules by Te Hiku Media

- Tokens must contain valid Māori characters
 - 5 vowels (*i*, *e*, *a*, *o*, *u*)
 - 10 consonants (*p, t, k, m, n, ng, wh, r, w, h*)
- Tokens must follow Māori syllable structure
 - Consonant/vowel alternation: (C)V(V), (C)V₁V₁V₂
 - No consonant clusters
 - End with a vowel
- Lengthened vowels may be indicated with a macron (ā) or double vowels (aa)

ML System

- Bidirectional Gated Recurrent Units (Bi-GRU)
 - Attention layer based on Bahdanau mechanism
 - Trained on Hansard dataset (James et al., 2022b)
- Text represented using fastText word embeddings
 - Skip-gram model with 300 dimensions
 - Pre-trained on Māori & Māori-English corpora (James et al., 2022a)
- Model trained to predict M/E/B tweets
 - Networks optimised with Adam (Kingma and Ba, 2015)
 - Softmax activation in output layer
 - Dropout rate of 0.5 and early stopping used

Pre-processing

- Collected tweets comprising roughly 30-80% Māori text from known Māori-language users
 - Users identified via Indigenous Tweets (Scannell, 2022)
- Tweets were subsequently cleaned
 - Stripped non-Roman characters (漢字)
 - Standardised user mentions (@user) & links (<link>)
 - Expanded English contractions (isn't → is not)
- Discarded ~40,000 irrelevant tweets
 - Retweets, bots, duplicates, short tweets (<4 tokens)
 - Tweets containing other languages (not exhaustive)

īhi! Heivā i Tahiti! Te ineine mai ra! Pā'oti i ni'a, pā'oti i raro, tīfene, tīfene, 'ami, 'ami

Token-Level Labels

MET Corpus Summary

781,381 tokens

Limitation: Many tweets were filtered out of the corpus to improve accuracy, such as tweets with one or more 'Unknown' or 'Ambiguous' labels

Manual Annotation

- We manually labelled 850 tweets for evaluation purposes
 - All three systems (RMT, ML & Hybrid) at both the token and tweet level
 - Strong agreement between annotators
 - Cohen's κ = 0.816 for a subsample of 200 tweets
- Recorded information about each mistake
 - False negative (FN) or false positive (FP)?
 - Specific error type
 - Interlingual homograph
 - Named entity (person, place, iwi, organisation, event, etc.)
 - Illegal character(s)
 - Misspelling or missing macron(s)

Evaluating our system

 Hybrid system had the fewest token-level errors, followed by RMT system

Evaluation Metrics

Token-Level

	F1-Score		Prec	ision	Recall	
	E	M	E	M	E	M
RMT	0.90	0.87	0.93	0.88	0.87	0.85
ML	0.94	0.85	0.94	0.96	0.94	0.79
Hybrid	0.95	0.94	0.94	0.92	0.95	0.97

Tweet-Level

		F1-Score		Specificity			Overall
	E	M	В	E	M	В	Accuracy
RMT	0.06	0.39	0.91	1.00	1.00	0.10	0.84
ML	0.71	0.40	0.93	0.97	0.98	0.60	0.88
Hybrid	0.89	0.51	0.95	0.96	0.98	0.78	0.93

Wrapping Up

- We devised a novel system for labelling Māori/English text
- We used this system to create an annotated corpus of 76,000 tweets
- These developments can facilitate further NLP research for Māori and New Zealand English
- This work could also be impactful for research in other low-resourced languages

Thanks for listening!

A Hybrid Architecture for Labelling Bilingual Māori-English Tweets

Check out our interactive visualisation tools:

- https://bilingual-met.github.io/hybrid/
- https://bilingual-met.github.io/hybrid/sample

Contact me

David Trye

dgt12@students.waikato.ac.nz

THE UNIVERSITY OF WAIKATO Te Whare Wananga o Waikato

References

- Dijkstra, T. (2007). Task and context effects in bilingual lexical processing. In Cognitive aspects of bilingualism (pp. 213-235). Springer, Dordrecht.
- Hovy, D., & Prabhumoye, S. (2021). Five sources of bias in natural language processing. *Language and Linguistics Compass*, *15*(8).
- James, J., Shields, I., Berriman, R., Keegan, P. J., & Watson, C. I. (2020, September).
 Developing resources for te reo Māori text to speech synthesis system. In *International Conference on Text*, Speech, and Dialogue (pp. 294-302). Springer, Cham.
- James, J., Yogarajan, V., Shields, I., Watson, C. I., Keegan, P., Mahelona, K., & Jones, P. L. (2022a). Language Models for Code-switch Detection of te reo Māori and English in a Low-resource Setting. In *Findings of the Association for Computational Linguistics:* NAACL 2022 (pp. 650-660).
- James, J., Shields, I., Yogarajan, V., Keegan, P. J., Watson, C., Jones, P. L., & Mahelona, K. (2022b). The Development of a Labelled te reo M\= aori-English Bilingual Database for Language Technology. arXiv preprint arXiv:2208.09778.
- Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- Poplack, S. (2018). Borrowing: loanwords in the speech community and in the grammar.
 Oxford: Oxford University Press.
- Scannell, K. P. (2022). 41 Managing Data from Social Media: The Indigenous Tweets Project. *The Open Handbook of Linguistic Data Management*, 481.
- Trye, D., Keegan, T. T., Mato, P., & Apperley, M. (2022). Harnessing Indigenous Tweets: The Reo Māori Twitter corpus. Lang Resources & Evaluation, 56, 1229-1268. doi:10.1007/s10579-022-09580-w