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Research Aim

• To improve automatic language identification 
for Māori-English text

• Focusing on (noisy) Twitter data

Tauranga kaimoana safe to eat

2x Māori 3x English
Bilingual
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• Te reo Māori is often interspersed with English
• Code-switching: ‘multi-word stretches’ (Poplack, 2018)

• Loanwords / borrowings: (mostly) individual words

Background



Related Work

RMT System

(Trye et al., 2022)

Identifying Māori-English 

code-switching points

ML System

(James et al., 2022a)

Rule-based approach

(Te Hiku Media)

Machine learning-based 

approach

Extracting Māori text

Key Research Question:

Can these two approaches be fruitfully 

combined into a hybrid system?



The Bigger Picture

• Te reo Māori is fundamental to Māori culture

• Both Māori and New Zealand English are under-
represented in speech and language technology 

• There is a critical need for new systems and resources 
to address this (James et al., 2020, 2022a)

• Existing NLP tools are biased towards (certain 
varieties of) English (Hovy & Prabhumoye, 2021)

• These tools often fail to recognise or correctly 
spell/pronounce Māori words (“Kaitaia” → “Car Tyre”)

• Our goal is to reduce this inequity in NLP 
resources



Key Challenges

• Lexical overlap
• Both Māori and English use the Roman script

• 100+ interlingual homographs
• Words that are spelt the same but have different 

meanings across languages (Dijkstra, 2007)

• i, a, hope, here, more, kite, etc.

• Social media language
• Internet slang, abbreviations, acronyms

• haha, ktk (Māori equivalent of lol), amirite, cuzzie

• Misspellings, typos

• Neologisms

• Emojis, hashtags, GIFs, etc.



RMT System

• Based on rules by Te Hiku Media

• Tokens must contain valid Māori 
characters

• 5 vowels (i, e, a, o, u)

• 10 consonants (p, t, k, m, n, ng, wh, r, w, h)

• Tokens must follow Māori syllable structure
• Consonant/vowel alternation: (C)V(V), (C)V1V1V2

• No consonant clusters

• End with a vowel

• Lengthened vowels may be indicated with a 
macron (ā) or double vowels (aa)



ML System

• Bidirectional Gated Recurrent Units (Bi-GRU) 
• Attention layer based on Bahdanau mechanism
• Trained on Hansard dataset (James et al., 2022b)

• Text represented using fastText word 
embeddings 

• Skip-gram model with 300 dimensions
• Pre-trained on Māori & Māori-English corpora 

(James et al., 2022a)

• Model trained to predict M/E/B tweets
• Networks optimised with Adam (Kingma and Ba, 2015)

• Softmax activation in output layer
• Dropout rate of 0.5 and early stopping used



Pre-processing

• Collected tweets comprising roughly 30-80% Māori text 
from known Māori-language users

• Users identified via Indigenous Tweets (Scannell, 2022)

• Tweets were subsequently cleaned
• Stripped non-Roman characters (漢字)

• Standardised user mentions (@user) & links (<link>)

• Expanded English contractions (isn’t → is not)

• Discarded ~40,000 irrelevant tweets
• Retweets, bots, duplicates, short tweets (<4 tokens)

• Tweets containing other languages (not exhaustive) 



Token-Level Labels
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MET Corpus Summary

76,416 tweets 781,381 tokens

2,417 usersLimitation: Many 

tweets were filtered out

of the corpus to 

improve accuracy, such 

as tweets with one or 

more ‘Unknown’ or 

‘Ambiguous’ labels



Manual Annotation

• We manually labelled 850 tweets for 
evaluation purposes

• All three systems (RMT, ML & Hybrid) at both the 
token and tweet level

• Strong agreement between annotators 
• Cohen’s κ = 0.816 for a subsample of 200 tweets

• Recorded information about each mistake
• False negative (FN) or false positive (FP)?

• Specific error type
• Interlingual homograph

• Named entity (person, place, iwi, organisation, event, etc.)

• Illegal character(s)

• Misspelling or missing macron(s)



Evaluating our system

• Hybrid system had the fewest token-level errors, followed 
by RMT system

me, one, more

False Negatives

(M misclassified as E)

kia, e, o, tau
i, a, Waitangi

False Positives

(E misclassified as M)
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include:



F1-Score Precision Recall

E M E M E M

RMT 0.90 0.87 0.93 0.88 0.87 0.85

ML 0.94 0.85 0.94 0.96 0.94 0.79

Hybrid 0.95 0.94 0.94 0.92 0.95 0.97

Token-Level

Evaluation Metrics

Tweet-Level

F1-Score Specificity Overall 

AccuracyE M B E M B

RMT 0.06 0.39 0.91 1.00 1.00 0.10 0.84

ML 0.71 0.40 0.93 0.97 0.98 0.60 0.88

Hybrid 0.89 0.51 0.95 0.96 0.98 0.78 0.93



Wrapping Up

• We devised a novel system for 
labelling Māori/English text

• We used this system to create an 
annotated corpus of 76,000 tweets

• These developments can facilitate 
further NLP research for Māori and 
New Zealand English

• This work could also be impactful for 
research in other low-resourced 
languages

System

MET Corpus

Evaluation



Thanks for listening!

Contact me

David Trye

dgt12@students.waikato.ac.nz

Check out our interactive visualisation tools:

• https://bilingual-met.github.io/hybrid/

• https://bilingual-met.github.io/hybrid/sample

A Hybrid Architecture for Labelling 

Bilingual Māori-English Tweets 

mailto:dgt12@students.waikato.ac.nz
https://bilingual-met.github.io/hybrid/
https://bilingual-met.github.io/hybrid/sample
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