
A Review of Categorical

Visualisation Techniques

Suggested citation: Trye, D. (2024). A review of categorical visualisation

techniques [Unpublished manuscript]. University of Waikato, New Zealand.

https://dgt12.github.io/files/catvis.pdf

1.1 Introduction

Categorical variables are prevalent in real-world datasets, frequently occurring

in domains such as the behavioural and social sciences, public health, biomed-

ical science, education, business and marketing (Agresti, 2012). Examples of

categorical data include responses to multiple-choice survey questions (e.g.,

strongly disagree, disagree, neutral, agree, strongly agree), treatment options

assigned to participants in a medical trial (e.g., drug A, drug B, placebo), and

the biological class to which different animals belong (mammal, bird, reptile,

etc.). Categorical variables are even found in highly quantitative fields, such as

industrial quality control, where products are rated based on their adherence

to specific standards (Agresti, 2019).

When dealing with categorical data, analysts are typically interested in

comparing category frequencies and investigating relationships between cat-

egories. Like other data types, the amount of categorical data available is

continually growing, increasing the need for efficient analysis methods (Jo-

hansson Fernstad, 2011). Surprisingly, despite these demands, visualisation

techniques for categorical data have received considerably less attention in

the literature compared to those for numeric data (Liu et al., 2016; Friendly,

1998). This is especially true when the need arises to visualise more than three

categorical variables simultaneously.

Categorical data visualisation presents several challenges. Firstly, nom-

inal categories do not have an intrinsic order or inherent spatial mapping

(Cibulková and Kupková, 2022). Secondly, combinations of categories become
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increasingly sparse when more variables are added, exemplifying the ‘curse of

dimensionality’ (Hofmann, 2006). Thirdly, variables with a large number of

categories may exceed the limits of the visual encoding, or render a visualisa-

tion unreadable. Overall, compared to numeric data, categorical visualisation

techniques appear to be more sensitive to structural characteristics of the data

(Johansson Fernstad, 2011).

This chapter provides a review and taxonomy of categorical visualisation

techniques. We begin by defining key terminology (Section 1.2), before de-

tailing the scope of the review and our method for gathering and organising

the relevant literature (Section 1.3). The heart of the chapter describes six

distinct ‘families’ of techniques that we have identified, which form the basis

of the proposed taxonomy (Section 1.4). We focus on prototypical examples

within each family, then introduce nine different types of analysis tasks from

a categorical visualisation perspective (Section 1.5). Finally, we compare gen-

eral strengths and weaknesses of each family and reflect on opportunities for

future work (Section 1.6). An interactive repository of the techniques reviewed

in this chapter is available at: https://cat-vis.github.io/.

1.2 Categorical Data

Categorical data consist of variables that take a fixed set of values, each rep-

resenting a distinct category or group, such as colour. Due to their unique

characteristics, these variables require different analysis methods from numeric

data, including specialised visualisation techniques (Friendly and Meyer, 2015).

The main advantage of visualising categorical data is the ability to reveal re-

lationships between multiple variables or categories more clearly than tabular

or textual representations.

1.2.1 Terminology

A range of terms is used in the literature to refer to categorical data. Our pre-

ferred terms within this thesis are emphasised here in bold. Individual (data)

items may alternatively be called objects, cases, records, tuples, points, vec-

tors, observations or samples. The properties of each data item are described

by a set of variables, where a variable is defined as a characteristic that can

vary from one item to another. Variables are sometimes also known as at-

tributes, features or dimensions. The number of distinct values that a variable

can take is its cardinality, while the values themselves are variously referred

to as categories, levels or classes. We refer to a group of two or more orthog-
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onal categories as a combination of categories. Categorical variables with

only two possible values are sometimes referred to as binary variables (Agresti,

2019; Friendly and Meyer, 2015).

Following Tan et al. (2006), we consider a categorical variable to be either

nominal, meaning its categories are unordered, or ordinal, meaning they

have a natural ordering. Examples of nominal variables include ‘gender’ and

‘continent’, whereas ‘customer satisfaction’ and ‘education level’ are both or-

dinal variables. We consider it important for a categorical visualisation tool

to accommodate both these data types. Additionally, quantitative (numeric)

variables can be binned, or discretized, to form (typically) ordinal variables,

though this process results in a loss of precision. Two common binning strate-

gies are to create categories of equal width or frequency (Dougherty et al.,

1995). For example, ‘income’ and ‘age’ are often divided into specific ranges.

Data can be univariate, bivariate, or multivariate, depending on whether

they comprise one, two, or more than two variables, respectively. We use the

terms multivariate and multidimensional interchangeably. Multivariate cate-

gorical data are relatively common: census data may include variables such as

gender, education level, religion and marital status; medical records might in-

clude disease types, treatment protocols and patient outcomes; retail databases

frequently categorise products by type, payment method and customer demo-

graphics. Analysing all categorical variables simultaneously can enhance un-

derstanding of complex relationships and support informed decision-making.

Statistical models often distinguish between response (or dependent) vari-

ables and explanatory (or independent variables). The latter are thought to

partially explain the value of the former. Often, a dataset contains a single

response variable and several explanatory variables (Theus, 2008). For exam-

ple, in the Titanic and Mushroom datasets introduced below, the response

variables are Survived (yes/no) and Edibility (poisonous/edible), respectively.

Depending on a user’s analysis task, it may be beneficial to highlight a re-

sponse variable within a visualisation by assigning it a prominent position, for

instance, or mapping it to colour.

1.2.1.1 Common Datasets and Data Forms

The Titanic dataset (Dawson, 1995; see Figure 1.1) is arguably the most well-

known dataset in the field of categorical visualisation. This dataset provides

socio-historical information about the passengers and crew aboard the RMS

Titanic, which tragically sank in 1912. Although the dataset has been the

subject of considerable attention (see, for example, Symanzik et al., 2019),
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and is widely used for illustrative purposes, it is relatively small, containing

only 4 variables, 10 categories and 2201 data items. Several different versions

of the Titanic data exist, some of which include the names of passengers as an

additional string-type (text) variable. We will use the Titanic dataset in most

of the examples in this chapter.

The synthetic Mushroom dataset (Schlimmer, 1987), describing properties

of mushrooms like their colour, odour and stalk shape, is considerably larger

than the Titanic dataset. It comprises 22 variables, 119 categories and 8124

data items, making it a popular choice for demonstrating how categorical visu-

alisation techniques can (or cannot) scale to larger and more complex datasets.

At the internal representation level, Friendly and Meyer (2015) refer to

three main forms of categorical data: case form, frequency form and table

form, which are illustrated in Figure 1.1. Case form provides each data item

as a separate entry, with rows corresponding to data items and columns to

variables. This allows any data item to be traced back to its individual identi-

fier. In contrast, frequency form collapses identical combinations of categories

into a single row, reporting their counts in an additional column. Finally, ta-

ble form presents data in a contingency table, which involves cross-tabulating

some or all of the available variables.

Figure 1.1: The Titanic dataset shown in (a) case form, (b) frequency form

and (c) table form. The Survived (yes/no) variable from Dawson’s (1995) orig-

inal dataset has been renamed Fate (survived/died) to give the two categories

semantically descriptive names.
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1.3 Scope and Methodology

In this review, we focus on visualisation techniques that are capable of show-

ing purely categorical data, for any number of variables. We limit our analysis

to techniques that treat variables as having flat and disjoint categories. In

other words, the categories within each variable lack sub-categories, and are

mutually exclusive. Datasets that include multi-value categories are likely bet-

ter modelled as sets (Alsallakh et al., 2016). Furthermore, our review focuses

on exploratory data analysis rather than on statistical model building (see

Friendly and Meyer, 2015). Categorical data with special properties fall out-

side the scope of this review, including geospatial and time-oriented data, as

well as relational data with categorical attributes.1

This chapter synthesises ideas and techniques for visualising categorical

data from roughly 120 papers. The literature was extracted by paying special

attention to publications from IEEE Xplore, EuroGraphics, Sage Information

Visualization and the Journal of Computational and Graphical Statistics that

explicitly mentioned ‘categorical’ data in the title or keywords. We also ex-

panded our search to include literature cited by these papers, as well as work

that cited them. The collected papers were tagged according to their primary

contribution, the vast majority (80%) being technique papers:

• technique: the paper introduces a specific technique or system for visu-

alising categorical data.

• evaluation: the paper provides an empirical, algorithmic or theoretical

evaluation of visualisation approaches for categorical data.

• ordering algorithm: the paper contributes an algorithm for rearranging

categorical data.

• framework: the paper contributes a framework or paradigm for visualis-

ing categorical data.

• textbook: a textbook on the topic of visualising categorical data.

• survey: the paper presents a survey of categorical data visualisation or

a related field.

Technique papers were tagged according to five further attributes that we

deemed important, as outlined in Table 1.1.

1We do, however, explore this further in our final case study, in Chapter 9.
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Table 1.1: Details of the five attributes by which technique papers were

tagged.

Category Description

Family
Size-Encoding The technique uses bars (line marks) with the length channel, or

wedges (area marks) with the angle or length channels.
Space-Filling The technique fills the available space and likely imposes a hierarchy

of variables.
Table The technique represents data in a 2D table or matrix, where each

cell contains visual encodings.
Glyph The technique uses glyphs or icons to represent individual items or

aggregates in the dataset.
Other The technique represents frequencies (in line with the CatViz ap-

proach) but does not fit into any of the above categories.
Projection The technique converts categories into numerical values before rep-

resenting these visually (in line with the QuantViz approach).

Data Type
Homogeneous The technique only supports categorical (not quantitative) data.
Heterogeneous The technique supports a mixture of categorical and quantitative

data.

Dimensionality
Univariate The technique supports only one categorical variable.
Bivariate The technique supports up to (or exactly) two categorical variables.
Trivariate The technique supports up to (or exactly) three categorical vari-

ables.
Multivariate The technique can support more than three categorical variables.

Cardinality
Very Low The technique requires at least one binary variable.
Low The technique supports variables with roughly (only) 2-5 categories.
Moderate The technique can handle at least one variable with 6-10 categories.
High The technique is designed to support at least one variable with 10-

100 categories.
Very High The technique is designed to support at least one variable with

100+ categories.

Alignment
Linear The technique arranges data along perpendicular or parallel axes.
Radial The technique is laid out in elliptical form, and likely uses polar

coordinates.
Other The technique does not use a linear or radial layout (e.g., force-

directed).

The families, which form the basis of our proposed taxonomy, are explained

in detail in Section 1.4. It was sometimes necessary to make subjective judge-

ments when assigning these tags, if relevant details were not overtly mentioned
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in the paper. We acknowledge that the interplay between a technique’s sup-

ported cardinality and dimensionality is important, though this was not ex-

plicitly coded. Our final literature collection can be interactively explored at:

https://cat-vis.github.io.2

1.3.1 Technique Taxonomy

Given the focus of this thesis on visualisation methods, the technique papers

were fundamental to the current review. We have organised this body of lit-

erature into a two-level taxonomy, as shown in Figure 1.2. The first-level

classification groups techniques into CatViz (frequency-based) and QuantViz

(quantification-based) approaches, following Johansson Fernstad and Johans-

son (2011). The CatViz approach involves directly mapping the cell counts

from a contingency table, using a visual representation suitable for categorical

data. In contrast, the QuantViz approach projects categories onto a (typically)

two-dimensional plane using quantification methods, and then represents the

data visually using any technique designed for numeric data. The quantifi-

cation approach aims to preserve relationships, such as distances, similarities

and associations between data points. Each approach has its own merits: in

an initial user study (ibid), CatViz techniques were found to be superior for

frequency tasks (e.g., identifying the most frequent category), while QuantViz

techniques were found to be better suited for similarity tasks (e.g., determining

which two categories are most alike).

In addition, we developed a second-level classification, based on ‘families’

of visualisation techniques. We have identified six families but, as new tech-

niques emerge, others can be added. Five of the six families relate to the

CatViz approach: size-encoding, space-filling, table, glyph and miscellaneous.

The remaining category, projection, encompasses any visualisation technique

used as part of the quantification approach. The projection family is highly

versatile, since converting categories to numbers fundamentally changes what

can be done with the visual representation. We note that these families are

not mutually exclusive: for instance, dimensional stacking (Section 1.4.3.2)

can be regarded as a hybrid table/space-filling technique.

2The database was created using the SurVis template (Beck et al., 2015).



8

Figure 1.2: Our proposed taxonomy comprises six ‘families’ of techniques:

size-encoding, space-filling, table, glyph, miscellaneous (all frequency-based)

and projection (quantification-based). The rectangle for projection is larger

to indicate that it encompasses many different possible representations for

numeric data.

1.4 Overview of Technique Families

In this section, we describe the six families of techniques, breaking these down

into further sub-categories where appropriate. At least one visualisation tech-

nique is reviewed in each section, and references are given for related methods.

1.4.1 Size-Encoding Techniques

We define size-encoding techniques as those which use bars (line marks) with

the length channel, or wedges (area marks) with the angle or length channels.

Consequently, this family can be clearly divided into a bar family and a wedge

family. Most techniques in the bar family have linear alignment, while those in

the wedge family are radial. Although equivalent from a mathematical point

of view, the wedge family is generally less effective than the bar family, since

angles are harder to compare than lengths (?). The Trellis display framework

Becker et al. (1996) can be applied to many size-encoding techniques to encode

additional categorical data via faceting.
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1.4.1.1 Bar Family

Dating back to the latter half of the 18th century (Playfair, 1786, as cited

in Friendly, 2006), the bar chart (or column chart) is a simple yet powerful

technique for encoding categorical data. As well as being easy to create and

interpret, bar charts are helpful for highlighting precise differences in category

counts. For nominal variables, the categories within a bar chart should gener-

ally be sorted by frequency (i.e., bar length); for ordinal variables, it may be

preferable to preserve the natural ordering of categories. While the classic bar

chart is limited to displaying a single categorical variable, numerous variations

exist, many of which enable additional variables to be encoded by leveraging

colour, texture and/or faceting. These extensions include:

• Stacked bar charts and their variants (see Figure 1.3; Indratmo et al.,

2018; Streit and Gehlenborg, 2014):

– Grouped bar charts (also called clustered bar charts, dodged bar

charts, multiple bar charts, and multi-series bar charts)

– 100% stacked bar charts (also called normalised bar charts)

– Layered bar charts

– Diverging stacked bar charts (also called a bidirectional bar chart if

the coloured variable is binary)

– Inverting stacked bar charts

– Faceted bar charts

– Relative multiples barcharts (rmb plots)

• Linked bar charts (Hummel, 1996), as implemented in tools like Mon-

drian (Theus, 2002) and High-D (Brodbeck and Girardin, 2019)

• Horizon bars (Lex et al., 2014)

• Du Bois wrapped bar charts (Karduni et al., 2020)

• Pareto charts (Wilkinson, 2006)

• Radial bar charts (Booshehrian et al., 2011)

• Circular bar charts (Skau and Kosara, 2016)

Taking one of the most popular examples from this list, the stacked bar

chart (Figure 3, top left) typically encodes the frequency of two categorical

variables, rather than just one. The first variable determines the categories

for the bars along the x- or y-axis, as in a regular bar chart, while the second

variable is broken down into segments within each bar. These segments are

typically distinguished by colour and are consistently ordered across all bars.

Stacked bar charts show the marginal distribution of the first variable and

the conditional distribution of the second variable (i.e., the distribution of the

second variable given the first one). This means that reversing the roles of the
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Figure 1.3: Six different variations of stacked bar charts (Indratmo et al.,

2018).

variables would result in a different plot and potentially yield different insights.

As with a regular bar chart, the scalability of a stacked bar chart ranges

from dozens to hundreds of categories for the axis variable, but is limited to

roughly a dozen categories for the second variable ?. Comparing both the total

length and the bottom segment of each bar is straightforward because they

share a common baseline, but comparing other segments is more challenging.

Bar charts can display more than two variables by ‘chaining’ multiple vari-

ables along the same or different axes, as shown in Figure 1.4. The bars in the

resulting visualisation show the joint frequency of each combination of cate-

gories involving all variables. Dozens to hundreds of bars can be shown, and

up to roughly eight variables. However, the more variables that are shown, the

less room there is to display the labels for each category. This kind of visu-

alisation imposes a hierarchy of variables (like most space-filling techniques),

which means changing the order of variables can affect the patterns seen, even

though the values of the bars remain unchanged. Tooltips and drag-and-drop

reordering may help to make sense of patterns in the data.
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Figure 1.4: ‘Multivariate’ bar chart showing the joint frequency of all four

variables from the Titanic dataset. Colour redundantly encodes Fate (blue =

died, orange = survived).

1.4.1.2 Wedge Family

Members of the wedge family use area marks, rather than line marks, to show

frequency. Pie charts (Playfair, 1801) and their close cousins, donut charts

(Skau and Kosara, 2016), are useful for representing proportions or percent-

ages of a whole when there are 12 categories or fewer. They are effective for

comparing one category relative to the whole dataset, but not for comparing

the proportion of one category to another, except when the variation is ex-

treme, or there are only two categories. Other members of this family include:

• Nightingale rose chart (Nightingale, 1857), also known as sector graphics,

Coxcomb charts and polar area diagrams

• Wind roses Sanderson and Peacock (2020)

• Four-fold displays (Fienberg, 1975; Friendly, 1995))

Although aesthetically pleasing, perceptually, pie and donut charts are

known to be less precise than bar charts. Figure 1.5 provides an example

of a faceted pie chart, representing three of the four variables in the Titanic

dataset. However, such charts should be used with caution. In his book The

Visual Display of Quantitative Information, Edward Tufte (1983, p. 178) re-
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Figure 1.5: A faceted pie chart of the Titanic dataset: Class is shown on the

x-axis, Sex on the y-axis and Fate is mapped to colour (blue = died, orange

= survived). It is clear that many more men than women died in each class.

marked: “the only thing worse than a pie chart is several of them, for then the

viewer is asked to compare quantities located in spatial disarray both within

and between pies”. Despite their limitations, pie and donut charts are per-

vasive and participants in a user study expressed a subjective preference for

them over bar charts (Siirtola, 2014).

1.4.2 Space-Filling Techniques

As the name suggests, space-filling techniques are arranged so that the lay-

out consumes all available space in the view. In the context of multivariate

categorical data, these techniques typically use area or containment marks to

show different combinations of categories. Space-filling techniques are geared

towards high information density, but the fact that they consume all the avail-

able space does not necessarily mean they do so efficiently (?, p. 175).

A variety of space-filling techniques can be applied to multivariate categor-

ical data by creating a hierarchy of variables (Reza and Watson, 2019; Kosara,

2008). This is despite the fact that the data in question are not inherently hier-

archical (i.e., categories do not have sub-categories). The hierarchy is derived

by mapping each categorical variable to a different level, with all categories of

the first variable at the top level, all categories of the second variable at the

second level, and so on. This results in a fully balanced tree whose nodes rep-

resent different combinations of categories. Figure 1.6 shows an example for

the Titanic data, together with a corresponding treemap (see Section 1.4.2.3).

The order of variables in the hierarchy is significant as it affects the user’s

ability to perceive structures. This ordering becomes even more crucial as the
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Figure 1.6: Left: Hierarchy derived from three of the four variables in the

Titanic dataset, splitting first by Class, then Sex, then Fate. Right: Treemap

using the same hierarchical structure, which shows values at the leaves of the

tree (the frequency of combinations of all three variables), as well as aggregates

at higher levels (Kosara, 2008).

number of variables increases. It is therefore important for the user to be able

to reorder, add or remove variables as desired (Kosara, 2008). Relevant factors

for determining an appropriate order may include the position of the response

variable, the perceived importance of other variables, and the distribution of

variable cardinalities. A good ordering for one technique might also differ for

another. Colour is commonly used to highlight the response variable.

1.4.2.1 ParSets Family

Several categorical visualisation techniques adapt parallel coordinates for nu-

meric data (?) by substituting data points with a frequency-based representa-

tion. Parallel Sets (Kosara, 2010; Kosara et al., 2006), pictured in Figure 1.7,

is the most well-known technique among this family. Reminiscent of a Sankey

diagram (Schmidt, 2006), this technique arranges variables along the y-axis

in bands of equal width, which are then partitioned according to category

frequencies. Associations between subgroups are shown using shaded parallel-

ograms (or ribbons) that connect categories from adjacent dimensions. The

widths of individual categories indicate marginal frequencies, while the widths

of parallelograms reflect both joint frequencies (relative to the width of the dis-

play) and conditional frequencies (relative to the width of the previous subset).

Numeric variables can be binned but not shown directly.

Two variations of Parallel Sets are possible: hierarchical and pairwise (see
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Figure 1.7: A Parallel Sets visualisation of the Titanic dataset, showing all

four variables (Davies, 2012).

Hofmann and Vendettuoli, 2013). In the hierarchical variation (described

above, and shown in Figure 1.7), the parallelograms are split according to

every preceding variable, resulting in increasingly complex, and less frequent,

subsets. In contrast, the pairwise variation displays two-dimensional subsets

relating to each pair of neighbouring variables. The hierarchical view is more

useful for visualising multivariate relationships but is inevitably more clut-

tered.

The main advantage of Parallel Sets is that it can handle roughly 10–15

variables in an interactive environment and 20-30 categories in total, which

exceeds the limits of most frequency-based techniques. In addition, the order

in which the hierarchy is derived is clearly readable—from top to bottom—

and categories and variables can be flexibly reordered, facilitating detection of

complex patterns in the data. Parallel Sets can also display numeric variables

by binning them.

Key limitations of Parallel Sets include visual interference from line cross-

ings and poor visibility of small parallelograms representing infrequent com-

binations. These issues are exacerbated when handling large numbers of cat-

egories and variables. For example, the Mushroom dataset requires 22 layers

and 8123 combinations, which is untenable (Dennig et al., 2024). To alleviate

visual clutter, research has focused on measuring and improving the layouts of

Parallel Sets (Alsakran et al., 2014; Dennig et al., 2021; Zhang et al., 2019).

Other techniques in the ParSets family, all of which can display mixed data,
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are Hammock Plots (Schonlau, 2003, 2024), CPCP (Pilhöfer and Unwin, 2013),

GPCP (VanderPlas et al., 2023), Parallel Assemblies Plots (Cantu et al., 2023)

and SET-STAT-MAP (Wang et al., 2022). Hofmann and Vendettuoli (2013)

observed that Parallel Sets and Hammock Plots suffer from the line width

illusion and reverse line width illusion, respectively. They proposed Common

Angle Plots to overcome these distortions, while Schonlau (2024) suggested a

correction to Hammock Plots by replacing the parallelograms with rectangles.

Finally, we note that chord diagrams (inspired by Krzywinski, 2009) can be

used to visualise relationships between two categorical variables (Humayoun

et al., 2018). Chord diagrams are related to techniques in the ParSets family

as they emphasise the flow of category subsets, but they are limited to showing

only two variables in the same plot.

1.4.2.2 Mosaic Family

Techniques in the Mosaic family are largely area-proportional, with colour of-

ten being used to highlight particular variables or statistical information. The

technique after which this family is named, the mosaic plot, was introduced

by Hartigan and Kleiner (1981) and further developed by Friendly (1999).

An example of a mosaic plot is given in Figure 1.8. In this technique, area-

proportional tiles are created by recursively subdividing the space along the

axes based on the categories of each variable. In addition to showing joint

frequencies through the size of the tiles, mosaic plots show the marginal pro-

portion of the first variable used for splitting, and the conditional proportions

for each subsequent variable based on the previous ones. A useful property

of mosaic plots is that the cells are aligned when variables are independent

Friendly (1999). Unfortunately, mosaic plots become difficult to read when

representing more than three variables, or a large number of categories.

Residual-based shading of the tiles in a mosaic plot can visually indicate

the lack of fit of a specific log-linear model (Friendly, 1994) or the statistical

significance of test results (Zeileis et al., 2007). Commonly, two shades for

both positive (blue) and negative (red) residuals are used. The shading usu-

ally either reflects significance at 90% or 99% confidence levels, or employs

fixed cut-offs at ±2 and ±4, corresponding to individual significance at alpha

levels of α = 0.05 and α = 0.001, respectively (Friendly, 1994). The use of

residuals works well for large tiles but not for smaller ones as it is difficult to

make out the colours. Moreover, the difference of size and colour may lead to

misinterpretations of the data; for instance, if two tiles have the same colour

but are drastically different sizes, a viewer may mistakenly believe the larger
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Figure 1.8: Mosaic plot of the Titanic dataset, illustrating the splitting

process for three variables: (a) first by Class, (b) then by Sex, (c) then by

Survived. Age is not shown.

one has a larger residual.

In addition to the traditional mosaic plot, the mosaic family comprises the

following chart types:

• Spine plots (Hummel, 1996, Figure 1.8a)

• Line mosaic plots (Huh, 2004)

• Marimekko charts (Miyamoto et al., 2022)

• Eikosograms (Cherry and Oldford, 2003)

• Double-decker plots (Hofmann et al., 2000; Hofmann, 2001)

• Sieve plots or parquet diagrams (Riedwyl and Schüpbach, 1994)

• Association plots (Cohen, 1980)

• Fluctuation diagrams (Hofmann et al., 2000)

• Equal bin size plots (Hofmann et al., 2000)

• Faceted mosaic plots (Meyer et al., 2008)

• Additional variations resulting from the Product Plots framework (Wick-

ham and Hofmann, 2011)

These charts have different strengths and weaknesses. For example, fluc-

tuation diagrams and equal bin size plots are useful for emphasising patterns

related to data sparsity, including empty combinations Hofmann et al. (2000).

Sönning and Schützler (2023) suggest that double-decker plots may be prefer-

able to traditional mosaic plots when a dataset comprises three or more vari-

ables, as this avoids comparisons of non-aligned tile lengths. In turn, rmb plots

(Section 1.4.1.1) are generally a better option than double-decker plots when

both the frequencies of combinations of explanatory variables vary consider-

ably, and the conditional relative frequencies of response categories, or the

difference between them, is small (Pilhöfer and Unwin, 2013).

Some techniques within the mosaic family represent observed frequencies
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less directly than traditional mosaic plots, either by emphasising expected

frequencies (e.g., sieve plots) or deviations from expected independence (e.g.,

association plots). Association plots and fluctuation diagrams were classified

within the mosaic family, rather than the size-encoding family, since both the

width and heights of the bars vary.

1.4.2.3 Implicit Tree Family

Implicit tree visualisations constitute another relevant type of space-filling

technique. These visualisations represent hierarchies without explicitly show-

ing parent-child relationships, instead using positional encodings of nodes, such

as node overlap or containment (Schulz et al., 2010). The techniques that work

best for multivariate categorical data emphasise the size of nodes within a vi-

sualisation, corresponding to combination frequencies, more than they do the

structure of the tree.

A prominent technique in the Implicit Tree family is the sunburst diagram

(Stasko and Zhang, 2000). This technique shows the proportion of different

categories and combinations of categories via a series of concentric rings. Each

ring corresponds to a different variable, with the angle of each slice being

proportional to the frequency of the category (first level) or combination of

categories (subsequent levels) that it represents. Figure 1.10 illustrates two

examples for the Titanic dataset. Outer levels are conditioned on inner lev-

els, effectively showing conditional relative frequencies. If too many variables

are shown, the slices or rectangles invariably become thin and unreadable.

However, zoomable versions of sunburst diagrams can help to accommodate a

larger number of categories and variables.

Other implicit tree techniques that can be applied to multivariate categor-

ical data include:

• Categorical Treemaps (Johnson, 1993), including CatTrees (Kolatch and

Weinstein, 2001)3

• Voronoi treemaps (Balzer and Deussen, 2005)

• Circular treemaps (Wang et al., 2006), also called circle packing, packed

circles and pebbles

• Icicle plots (Kruskal and Landwehr, 1983)

• Radial Icicle Trees (Jin et al., 2023)

• Hi-D Maps (Reza and Watson, 2019)

3Although devised independently, these are similar to mosaic plots.
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Figure 1.9: Left: Sunburst diagram showing all four variables of the Titanic

dataset. Right: One of the variables (Survived) is removed from the sunburst

itself and instead emphasised using colour (Clark, 2006).

1.4.2.4 Miscellaneous Space-Filling Techniques

A handful of space-filling techniques for categorical data do not fall neatly

into the above families. These include Karnaugh-Veitch-Maps (KVMaps ; May

et al., 2007; 2010), Nested Rings (NRV ; Vivacqua and Garcia, 2008), the

Attribute Map View (Liu et al., 2009) and concentric pie charts (Wickham

and Hofmann, 2011). On the surface, Nested Rings appear similar to sunburst

diagrams but they are not recursively subdivided; instead, they show marginal

(univariate) frequencies for each variable. This is also how the Attribute Map

View differs from a regular treemap.

1.4.3 Table Techniques

Techniques in the table family utilise visual encodings within each cell of a

table, such as colours and bars, instead of displaying only raw text. We di-

vide these techniques into three sub-categories: tabular, graphical contingency

tables and pairwise matrices. Tabular techniques and pairwise matrices are

generally well-suited to heterogeneous data, while graphical contingency ta-

bles are designed for purely categorical data.

1.4.3.1 Tabular Family

Tabular visualisations leverage the intuitiveness of a spreadsheet, with each

row (or column) representing a data item or aggregate, and each column

(or row) representing a variable. Prominent examples of tabular techniques
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that accommodate multiple categorical variables include Table Lens (Rao and

Card, 1994) and Taggle (Furmanova et al., 2020). Table Lens displays each

categorical variable as a ‘blip’—a horizontal coloured line aligned with the

category’s name—while Taggle provides additional multi-form encodings, in-

cluding a ‘matrix’ arrangement and ‘colour’ square with an adjacent text label.

Both techniques support common spreadsheet operations, such as sorting and

filtering, as well as overview and detail displays. Another notable technique

in this family is the Tableplot (Tennekes and de Jonge, 2013; Tennekes et al.,

2013), which requires a numeric variable for sorting but supports several high-

cardinality categorical variables. The data and legend are not the focus here;

the figure is simply included to provide the general look and feel of this tech-

nique.

Figure 1.10: Tableplot of census data showing seven categorical variables

(Tennekes and de Jonge, 2013).

1.4.3.2 Graphical Contingency Tables

Graphical contingency tables provide a visual representation of an n-way ta-

ble. The arrangement of variables and categories within the table affects the

patterns that can be seen.

Notable examples of techniques in this family are dimensional stacking

(LeBlanc et al., 1990), colour-coded text tables and balloon plots (Jain and

Warnes, 2006). Dimensional stacking produces a heatmap, like the one in Fig-

ure 1.11, by embedding grids within grids. The heatmap contains one cell for
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each possible combination of categories, and is helpful for identifying clusters,

outliers and patterns in the data. Dimensional stacking can be implemented

in spreadsheet software using Pivot tables in conjunction with conditional for-

matting.

Figure 1.11: Dimensional stacking showing Bacteria resistance against eight

antibiotics, labelled a1 −−a8 (Tominski and Schumann, 2020).

In terms of scalability, dimensional stacking should be limited to nine vari-

ables, each with no more than roughly five categories (Hoffman and Grinstein,

2001). Balloon plots are similar to dimensional stacking, but they display

coloured circles in each cell, which are sized according to frequency. The

colour of the circles can either redundantly encode this value or highlight the

categories of a particular variable of interest.

1.4.3.3 Pairwise Matrices

The final type of table technique that we identified is pairwise matrices. These

techniques feature a plot for each pair of variables in the data, thereby display-

ing all possible bivariate relationships. Univariate summaries can optionally

be shown along the main diagonal. Examples that support purely categorical

data are the Heatmap Matrix (Rocha and da Silva, 2018, 2022) and Mosaic

Matrix (Friendly, 1999), while the GPLOM (Im et al., 2013) and Generalized

Pairs Plot (Emerson et al., 2013) are suitable for mixed data. The GPLOM

uses a heatmap matrix for pairs of categorical variables, whereas the Gener-

alised Pairs Plot offers a choice between a mosaic plot, fluctuation diagram, or
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faceted bar chart. The GPLOM provides the richest interaction out of these

techniques.

A shared property of most pairwise matrices—apart from displays involving

mosaic plots—is that they are fully symmetrical. This means that only half

of the matrix needs to be displayed. Nevertheless, it can be beneficial to keep

the full display, so that panels relating to each variable can be identified in a

straight line, with the user focusing on either rows or columns. The Heatmap

Matrix differs from the other techniques in that it allocates a fixed amount of

space per category, rather than per variable. This enhances readability when

a small number of variables have more than five categories. One limitation of

pairwise matrices is that they do not display multivariate relationships directly,

though this can be accomplished via brushing and linking across panels. In

all cases, reordering rows and columns can be helpful for identifying relevant

patterns.

1.4.4 Glyph Techniques

Glyphs and icons can also be used to represent categorical data, including pic-

torial, associative and geometric symbols (Robinson et al., 1984, p. 288). When

designing glyphs for categorical data, it is important to consider the number

of variables and internal categories to be represented, as well as suitable com-

binations of variables and encodings. Individual glyphs may be created for

individual items, or for each combination of categories. In the latter case, the

frequency of each combination can be mapped to the size of the glyph (e.g.,

Dennig et al., 2024). Incorporating a reference glyph can aid viewers in decod-

ing the mappings (Maguire et al., 2012). Additionally, sorting glyphs by one

or more variables can be beneficial (Chung et al., 2015; Ancker et al., 2011).

Examples of glyph techniques include Star plots (Coekin, 1969), Autoglyphs

(Beddow, 1990) and Chernoff faces (Chernoff, 1973), but see Ward (2002) for a

detailed list. Chernoff faces involve mapping variables to facial features, such

as mouth size and face colour, and they support roughly a dozen variables.

They are well suited to low-cardinality categorical data where not many values

have to be discriminated. Disadvantages of Chernoff faces include that the

mappings can be unnatural, and may convey unintended emotional states.

De Soete and Do Corte (1985) found that only some facial features were clearly

perceptible to users. Consequently, they recommended using those features for

encoding the most important variables.

An advantage of glyphs over other techniques is that they enable designs

that leverage metaphors and semantic relations. Domain-specific encodings
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promote ‘natural mappings’ (Siirtola, 2005), which increases understanding of

glyphs and their memorisation (Maguire et al., 2012; Borgo et al., 2013). An

example of metaphorical glyphs, applied in the context of hearing loss context,

is shown in Figure 1.12 (Ramos et al., 2023).

Figure 1.12: Metaphorical ‘emoji’ glyph, where each glyph represents a per-

son. Several categorical variables are encoded: hearing loss in left and right

ears (sunglasses or headphones), region (colour), ear test appointment status

(facial expression) and age (face colour).

When representing categorical data, glyphs are typically only feasible if

there is a relatively small number of categories per variable. Other, more

general disadvantages of glyphs relate to their size, the limited capacity of

visual channels and the cognitive demand they place on the viewer (Borgo

et al., 2013).

Alternatively, instead of using complex glyphs, simple icons can be organ-

ised within a grid display, typically just varying the use of colour and/or shape.

This approach is exemplified by frequency grids (Micallef et al., 2012), Gath-

erplots (Park et al., 2023), and icon plots (Wolf, 2021). Figure 1.13 illustrates

an icon plot of the Titanic dataset, in which each full-sized icon represents 100

people. Such plots are relatively simple to interpret.
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Figure 1.13: Icon plot of the Titanic dataset where each full-sized item

represents 100 people.

1.4.5 Miscellaneous Techniques

Several other frequency-based (CatViz) visualisation techniques for categorical

data do not fit into the above groups. These include but are not limited to:

• Cleveland dot plots (Cleveland, 1984) and lollipop charts

• Spreadplots as implemented in ViSta (Valero-Mora et al., 2003)

• Granular Representation (Shiraishi et al., 2009)

• Kinetica (Rzeszotarski and Kittur, 2014)

• Cobweb diagrams (Upton, 2000)

• CatNetVis (Thane et al., 2023)

• Conditional Inference Trees (Hothorn et al., 2006)

• Multivariate bar charts with an explicit tree diagram Kosara (2007)

• ContingencyWheel and ContingencyWheel++ (Alsallakh et al., 2011,

2012)

• Worlds within worlds (Feiner and Beshers, 1990)

• Trilinear plots (Allen, 2002)

• Tetrahedrons (Fienberg and Gilbert, 1970)

• Various set and hypergraph representations, where categories are repre-

sented as sets (e.g., RectEuler ; Paetzold et al., 2023) or hyperedges (e.g.,

PAOHVis ; Valdivia et al., ?)

CatNetVis (Thane et al., 2023), shown in Figure 1.14, represents categories
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as nodes in a force-directed network. Connected nodes are attracted to each

other, and non-connected nodes are repelled. An advantage of this layout is

that no order needs to be specified for either the categories or variables. The

size of each node represents its frequency, while its colour is determined by

the mode response category. Node labels show the name of the corresponding

category and variable, with font size denoting entropy. The width of each

edge is proportional to the overlap between the corresponding categories, as

calculated by the Jaccard Index. Edges can be filtered by entropy to reduce

clutter and home in on specific communities, aided by zooming and tooltips.

With these interactive capabilities, CatNetVis can be used to explore dozens

of variables and hundreds of categories.

Figure 1.14: CatNetVis showing life expectancy data with a filter applied.

There are two main communities, relating to under-developed countries (left)

and developed countries (right).

1.4.6 Projection Techniques

Following the QuantViz approach mentioned in Section 1.3, techniques in the

projection family map high-dimensional data into a low-dimensional space.

The goal is to preserve relationships in the data, such as distances, similarities

and associations between categories. At the heart of this approach are two key

steps: a dimensionality reduction technique transforms categories into num-

bers, and a visualisation technique represents the result of this transformation.

For a detailed review of projection techniques, see Johansson Fernstad (2011).

The most well-known dimensionality reduction techniques for categorical
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data are Correspondence Analysis (CA; Greenacre, 2017) for two categori-

cal variables, and Multiple Correspondence Analysis (MCA; Tenenhaus and

Young, 1985) for greater numbers of variables. These dimensionality reduc-

tion techniques have many different names and variations.

Popular choices for visualising the results of Correspondence Analysis are

CA Maps and Biplots Gabriel (1971), which are both types of scatterplots.

Other visualisation techniques used for CA and MCA include:

• Contribution Biplots (Greenacre, 2013)

• Moon Plots (Bock, 2011)

• Voronoi Diagrams (Broeksema et al., 2013; Dennig et al., 2024)

• Andrews Curves (Rovan, 1994)

• Dendrograms (Beh and Lombardo, 2014)

• Z-Plots (Choulakian et al., 1994)

• Chernoff Faces (Beh and Lombardo, 2014)

While Correspondence Analysis and Multiple Correspondence Analysis are

useful for capturing structure in high-dimensional categorical datasets, they

have a number of drawbacks. Both techniques are difficult for non-experts

to interpret, they do not display frequency-related information, or convey the

reasons why items belong to particular clusters. Furthermore, CA and MCA

quickly become cluttered when the number of categories increases, since the

individual category labels are usually shown next to the points themselves.

When there are large numbers of variables in MCA, it is also difficult to de-

termine which categories belong to which variables. These plots result in

overlapping labels when there are many categories, and are generally sensitive

to outliers.

Some interactive tools combine both stages of the QuantViz process in a

user-controlled way. MiDAVisT (Johansson Fernstad, 2009; Johansson and

Johansson, 2010), shown in Figure 1.15, is one such approach. The figure has

been chosen to show all views at once, thereby highlighting the interactive

capabilities; the details of the categories and text are not important. This

tool provides suggestions for numeric representations to the user, which they

can adjust interactively. The user can then explore the results using a range

of visualisation methods in multiple coordinated views, as well as algorithmic

analyses, such as clustering and correlation analysis.



26

Figure 1.15: Multiple view environment within MiDAVisT, consisting of a

scatterplot matrix (top left), Table Lens visualisation (top right) and parallel

coordinates display (bottom).

1.5 Analysis Tasks for Categorical Data Visu-

alisation

Before moving on to a general comparison of the techniques in our taxon-

omy and a discussion of avenues for future work, we provide an overview of

nine kinds of analysis tasks associated with categorical data visualisation. An

awareness of such tasks is helpful for designing, improving, evaluating and

comparing categorical visualisation techniques. We note that not all of these

categories are applicable to all techniques.

Overview tasks constitute a useful first step in any analysis of categorical

data: these include determining the total (or selected) number of data items,

variables and categories in a dataset, as well as inspecting the distribution of

variable cardinalities. Users should be familiar with the basic structure and

characteristics of a dataset before proceeding with their analysis.

Drawing inspiration from Unwin and Pilhoefer (2020), missing value tasks

are concerned with obtaining a summary of missing values in the data, so that

these can be dealt with appropriately. Missing value tasks for categorical data

may relate to variables or data items (records). For example, a user may wish

to summarise the number of missing values across all variables, or determine

the number of data items that are incomplete, before filtering or removing
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them. Missing value tasks may be seen as a subset of overview tasks, since

they involve gaining a preliminary understanding of the structure of the data.

Identification tasks focus on contextualising individual data units. Ex-

amples include determining which variable a particular category belongs to,

determining which categories belong to a particular variable, and identifying

any response variables within the dataset. An example involving multiple

variables is identifying which categories are present in a given combination of

categories, such as a particular tile in a mosaic plot.

Frequency tasks, which were a key part of Johansson Fernstad and Fern-

stad’s (2011) study, play a crucial role in categorical data analysis. These

tasks involve determining, comparing and ranking the frequency of particular

categories or combinations of categories. The tasks may be univariate (involv-

ing marginal frequencies of one or more variables) or multivariate (involving

cross-tabulation of two or more variables). Examples of univariate tasks are in-

specting the marginal distribution of each variable, determining the n-th most

(or least) frequent category across the entire dataset and ranking all categories

within a particular variable by frequency. Examples of multivariate tasks are

comparing the joint frequencies of two or more combinations of categories,

determining conditional frequencies of a target variable for each combination

of explanatory variables, and identifying the number of empty combinations

involving n variables.

Similarity tasks, also explicitly mentioned by Johansson Fernstad and Fern-

stad (2011), involve identifying structural patterns and clusters within the

data. These tasks operate at both the category and variable levels. Clustering

seeks to identify groups of items that are similar to each other and different to

items belonging to other clusters. Examples of similarity tasks include iden-

tifying the n most similar categories within a given variable, finding clusters

of combinations of categories, and identifying the n most similar variables to

a given variable. In certain contexts, it may also be helpful to identify which

variable is least similar to all others.

To support these tasks, various similarity measures can be used, such as

the overlap similarity measure, Jaccard index, Cosine distance and mutual

information (Boriah et al., 2008 discuss additional measures). The most ef-

fective approach for computing some of these measures involves converting

variables into multidimensional binary attributes through one-hot encoding,

then comparing the resultant vectors across variables.

Co-occurrence tasks combine elements of the previous two task types, in-

vestigating conditions under which two or more categories appear together
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within the dataset. Examples include finding categories across a given set of

variables that occur together at least p% of the time, and finding n categories

from any other variables that a given category occurs with most.

Association tasks explore the relationships between variables or categories,

aiming to determine if and how they are associated. Investigating category

frequencies by themselves can be misleading if uncorrelated variables exist.

Examples of association tasks include discerning global associations between

variables, detecting individual associations between categories of different vari-

ables, and identifying one-way dependencies where one category nearly always

occurs with another, but not vice versa. Several association measures are avail-

able for analysing categorical and ordinal data, including Cramer’s V and the

Goodman-Kruskal tau index (Goodman et al., 1979).

Deviation tasks involve determining the extent to which the observed data

deviate from expected values. They can be helpful for identifying patterns

and outliers in the data, and determining the lack-of-fit of a log-linear model.

Common examples of deviations include Pearson residuals, Standardised resid-

uals and Deviance residuals. Typical tasks are finding the combination with

the smallest/largest deviation, finding the deviation of a given combination of

categories and examining the distribution of deviations for all combinations

involving n variables.

Finally, data item tasks are related to the records in a dataset, and are only

applicable when a dataset contains individual identifiers (e.g., passenger names

are included in some versions of the Titanic dataset). Example tasks include

looking up a data item based on its identifier, comparing categories among two

or more data items, and summarising category counts for a particular group of

data items. Currently, only a few categorical visualisation techniques support

analysis of individual data items.

1.6 Discussion and Future Work

We now consider general strengths and weaknesses of the visualisation families

reviewed in this chapter, as well as possible avenues for future work in the area

of categorical data visualisation. The different families of techniques in our

taxonomy have different strengths and weaknesses, affecting their suitability

for different contexts and analysis tasks. An overview of key points is provided

in Table 1.2.
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Table 1.2: Comparison of visualisation families.

Family Strengths Weaknesses
Size-encoding
(e.g., bar charts,
pie charts)

• Intuitive (no training re-
quired)

• Bars support precise com-
parisons

• Can be faceted to show extra
variables

• Useful for part-to-whole
comparisons for a single
variable

• Limited to few categories per
variable or few variables

• Wedges suffer from percep-
tual distortions

• Linking becomes compli-
cated with many variables

Space-filling
(e.g., ParSets,
mosaic plots)

• Area (spatial regions) well-
suited to categorical data

• Optimize the space used
• Useful for emphasising a re-
sponse variable

• Relatively independent of
number of data items

• Quickly become cluttered
• Different orders vastly
change the display / sensi-
tive to ordering

• Suffer from visual interfer-
ence (e.g., line-crossings)

Glyphs (e.g.,
Chernoff faces,
metaphoric
glyphs)

• Visually emphasise items as
individual objects

• Can use semantically mean-
ingful representations

• Suitable for both dense and
sparse structures

• Poor scalability (if using one
glyph per item)

• Usually requires carefully
chosen variable-to-glyph
mapping

• Learning and memorisation
can be cognitively demand-
ing

• Not all glyphs suitable for
nominal variables

Table (e.g., Ta-
ble Lens, Tag-
gle)

• Utilise a familiar,
spreadsheet-like layout

• Fairly scalable in terms of
both categories and variables

• Direct representation of indi-
vidual records

• Well-suited for heteroge-
neous data

• Pairwise matrices provide a
compact overview

• Pairwise matrices limited to
bivariate relationships

• May confuse frequency in
heatmap with similarity

• Desired properties not al-
ways possible (many fre-
quent combinations)

Continued on next page
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Table 1.2 continued from previous page

Family Strengths Weaknesses

Projection (e.g.,
M/CA, biplots)

• Excel at similarity tasks
• Can handle many variables
• Useful for cluster analysis
• Any visualisation technique
for numeric data can be used

• Lack of frequency informa-
tion

• Not easily interpretable
• Sensitive to outliers
• Distortion (e.g., horseshoe)
effects

• Cluttered when there are lots
of categories

• First two dimensions may
not capture sufficient vari-
ance

Regarding future work, the analysis tasks outlined in the previous section

can be used to identify gaps in existing work, such as the lack of explicit con-

sideration of missing values within most categorical visualisation techniques.

There is also potential for visualising the results of a wider range of similarity

and association measures for sets of two or more categorical variables.

A major limitation of the reviewed techniques is their general lack of scal-

ability. Most techniques scale exponentially when a categorical variable is

added, quickly leading to visual clutter and increased computation time. High-

cardinality variables are also problematic, not least because channels like colour

can only show about 6-8 categories effectively. On the other hand, the scal-

ability of categorical visualisation techniques is relatively independent of the

number of data items, except when these are displayed individually, as is the

case for various table and glyph techniques. Some of the reviewed techniques

accommodate only a small number of variables, while others support multiple

variables but only consider pairwise relationships. Rarely does a technique

enable visualisation of relationships between many variables and categories

simultaneously. However, techniques like CatNetVis are promising recent de-

velopments. Even so, there remains a need for more powerful categorical visu-

alisation techniques that make use of visual channels in perceptually efficient

ways.

Crucially, the field would benefit from more comprehensive user studies

that focus specifically on multivariate categorical data. Our review of the

literature suggests that there have been few developments in this area since

this gap was identified by Johansson Fernstad and Johansson (2011), apart

from the study carried out by Hofmann and Vendettuoli (2013). The proposed

task and technique classifications in this survey paper provide a framework

for designing such studies: representative techniques from different groups in

our taxonomy (Section 1.3) can be compared with respect to key analysis
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tasks (Section 1.5), using datasets of varying complexity. Online user studies

for multivariate categorical data could be facilitated by the ReVISit software

framework (2023).4.

Only a small proportion of the reviewed techniques have publicly available

implementations that do not require programming skills and which allow users

to analyse their own datasets. Few interactive tools are available for techniques

that were proposed more than ten years ago (e.g., we could not find imple-

mentations for Nested Rings, Granular Representation or KVMaps). Even

some more recent techniques suffer from this problem (e.g., the Heatmap Ma-

trix and CatNetVis). User-friendly tools for other techniques, like Parallel

Sets and ContingencyWheel++, were previously available but are no longer

maintained, making them less accessible, or inaccessible, to non-computer sci-

entists. The development of modern, code-free tools is needed to democratise

access to these techniques.

Existing visualisation techniques offer significant potential for enhancement

through increased interaction. For example, allowing flexible changes to data

mapping can increase the readability of glyph-based techniques like Chernoff

faces. Similarly, the ability to reorder variables is crucial for techniques where

a hierarchical structure is imposed, such as Parallel Sets, mosaic plots, sun-

burst diagrams, since these changes can drastically alter the display. For such

techniques, providing an interactive, separate view of the imposed tree struc-

ture could facilitate understanding and exploration of different configurations

of the visualisation. This could be implemented as a classic tree diagram with

drag-and-drop functionality. More generally, since it does not always make

sense to incorporate all variables at once Theus (2008), it is beneficial to allow

user-controlled inclusion and exclusion of individual variables. There should

be flexibility to (re-)display variables that are not currently visible, unless the

user has explicitly removed them from the dataset.

Related to this, of all the techniques reviewed, only MiDaVist and ViSta

(spreadplots) appear to integrate multiple coordinated views. In general, com-

bining different representations can highlight different aspects of the data,

provided the display is not overly cluttered. In fact, we only identified two

techniques that combine CatViz and QuantViz representations (Valero-Mora

et al., 2003; Dennig et al., 2024)). Given that these two approaches are useful

for different analysis tasks (Johansson Fernstad and Johansson, 2011), con-

necting them in visualisation systems offers potential to harness their relative

strengths. For example, it would be interesting to be able to view Parallel Sets

4See https://revisit.dev/
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and CA plots side-by-side, and to enable linked interactions between them.

Even if plots cannot be shown side-by-side, due to lack of screen space, it is

helpful to be able to switch between different representations while preserving

selections

Furthermore, apart from tabular techniques such as Table Lens and glyph-

based methods like Chernoff faces, few categorical visualisation techniques

support the display or analysis of individual data items (in line with the data

item tasks detailed in Section 1.5). Providing access to individual identifiers

and any additional string-type (text) variables in the raw data enables users to

address micro-questions about specific records. While it is possible to display

limited text about each data item in area-proportional visualisations of cate-

gorical data (e.g., as demonstrated by Brath, 2018, p. 155), a more scalable

solution involves displaying the text within a coordinated table view (follow-

ing Liu et al. (2009)). For instance, clicking on different visual elements (e.g.,

a bar in a multivariate bar chart, a tile in a mosaic plot or a parallelogram

in Parallel Sets) could highlight or isolate the corresponding records in the

table view. This could be powerfully assisted by search functionality that tar-

gets the identifier. Many existing categorical visualisation techniques could be

extended in this way.

We stated at the beginning of the chapter that, in our view, categorical

visualisation techniques should support both nominal and ordinal data. Some

QuantViz techniques, including several variants of Correspondence Analysis,

take the order of categories into consideration (Beh and Lombardo, 2014).

Surprisingly, however, we did not encounter any CatViz tools where ordinal

variables were treated or displayed differently from nominal variables. For

instance, it may be more appropriate to use greyscale for ordinal variables

instead of colour, in accordance with perceptual guidelines (Mackinlay, 1986).

1.7 Postscript

This chapter has reviewed existing techniques for visualising categorical data.

After explaining our scope and methodology, we introduced a two-level tech-

nique taxonomy, providing a foundation for understanding and comparing dif-

ferent approaches. Situated within the established CatViz/QuantViz frame-

work, this taxonomy organises six distinct families: size-encoding, space-filling,

table, glyph, miscellaneous (all frequency-based), and projection (quantification-

based). We discussed prominent examples from each family, ranging in com-

plexity from simple bar charts to much more sophisticated tools like CatNetVis
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and MiDAVisT.

In Section 1.5, nine different kinds of analysis tasks for dealing with cate-

gorical data were proposed, from overview tasks to frequency and association

tasks. This was followed by a summary of the general strengths and weaknesses

of each family of techniques. Finally, we pinpointed areas for future research,

emphasising the need for more scalable solutions, empirical user studies, code-

free tools and enhanced interaction. We also advocated for better support

for individual data items, as well as for handling ordinal variables alongside

nominal ones. The remaining chapters in Part II (Chapters 4 & 5) present

new and adapted techniques that seek to address some of these gaps, with a

particular focus on improving scalability and interaction.
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